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1 Introduction

The goal of this project was to characterize the trend between the qubit's T1 and the cavity
population, n̄. These are my notes the papers I read and the concepts I learnt over the summer.
Starting from diagonalization of the Jaynes-Cummings Hamiltonian in the dispersive regime up to
calibrating n̄ from the qubit-spectrum.

The last chapter contains the crux of the experimental analysis for calibrating n̄. Please refer
to the attached Mathematica and Jupyter Notebooks for the code corresponding to this analysis.

The appendices contain some key derivations I worked through this summer, while reading
seminal papers on Circuit QED.

Please refer to Part II, which is a description of my results from my Qiskit Open-Pulse.

2 Circuit Quantum Electrodynamics (Circuit QED)

2.1 The Jaynes-Cummings Hamiltonian

ĤJC =
1

2
~ωqσ̂z + ~ωc

(
â†â+

1

2

)
+ ~g

(
σ̂+â+ σ̂−â

†) (1)

where g = −1

2
Ω0 =

−Pge
~

√
~ωc
ε0V

sin
(ωcx0

c

)
(2)

2.2 Uncoupled Eigenstates

If we ignore the interaction term, ~gV+ = ~g
(
â†â+ 1

2 + ~g
(
σ̂+â+ σ̂−â

†)), then the qubit and
cavity essentially exist in seperate Hilbert spaces. As such, the eigenstates are simply the tensor
product states between the cavity's Fock basis, {|n〉 | ∀n ∈ Z, n ≥ 0} and the TLS eigenstates
{|g〉, |e〉}, with eigenenergies Eg/e,n [1].

|n, g〉 = |n〉 ⊗ |g〉 |n, e〉 = |n〉 ⊗ |e〉 (3a)

Eg,n = −1

2
~ωq + ~ωc

(
n+

1

2

)
Ee,n = +

1

2
~ωq + ~ωc

(
n+

1

2

)
(3b)

When the system is nearly resonant, i.e. |∆| = |ωq − ωc| � ωc, then the uncoupled eigenstates
|n, g〉 and |n − 1, e〉 are nearly degenerate. In other words, an excitation stored in the cavity is
nearly equivalent to one stored in the qubit. The state corresponding to the qubit in the ground
state and the cavity in vacuum, |0, g〉, is the only unpaired state [1].

These states can be organized into a ladder of doublets, as shown in Figure 2.2, where the nth

doublet store n elementary excitations either as n �eld quanta or n− 1 �eld quanta and one qubit
(or atomic) quantum. The operator N̂ = â†â + σ̂+σ̂− represents the total number of elementary
excitations [1].

2.3 Dressed States

Now we can consider the full Jaynes-Cummings Hamiltonian given by Equation 2. Observe that
ĤJC commutes with the excitation number operator N̂ . This implies that the total number of
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Figure 1: Uncoupled qubit-cavity eigenenergies, for ∆ < 0, organized as a ladder. Apart from
the ground state |0, g〉, the eigenenergies pair into doublets where the total excitation number is
conserved. In each doublet, the states |n− 1, g〉 and |n, e〉 are seperated by ~∆. The doublets are
seperated from each other by ~∆

excitations is conserved, and the coupling term V̂+ only causes an interaction within each doublet.
This corresponds to our physical intuition that the excitation number is conserved when the cavity
and qubit exchange a photon.

This allows us to restrict ourselves to the nth doublet only. The Hamiltonian restricted to the
basis {|n, g〉, |n− 1, e〉} is:

Ĥn = ~nωc1̂−
1

2
~
[

∆ 2g
√
n

2g
√
n −∆

]
This 2 × 2 matrix is simply diagonalized, to get the exact eigenvalues (given by Equation 4)

and eigenstates (given by Equation 5). Figure 2.3 shows the eigenenergies as a function of the
qubit-cavity detuning. Observe that as ∆/g → ∞, the states dressed states tend towards the
uncoupled states. This can be understood as the qubit and cavity becoming so far detuned that
any interaction between them is supressed [1, 2].

E±,n = ~nωc ± ~
∆

2

√
1 + 4n

( g
∆

)2

(4)

|n+〉 = sin θn|n, g〉+ cos θn|n− 1, e〉
|n−〉 = cos θn|n, g〉 − sin θn|n− 1, e〉

(5a)

(5b)

where

tan(2θn) =
2g
√
n

∆
(6)
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Figure 2: The Dressed State energies as a function of the relative detuning ∆
2g
√
n
. The uncoupled

energies are represented as dotted lines. Sourced from [1].

3 Strong Dispersive Regime

It is most common to work in the dispersive regime of Circuit QED, where |∆| � g. Here the
dressed states are only weakly entangled between the qubit and cavity, thus retaining much of
their individual characters [2]. As will be shown in Equations 9 and 10, the interaction term in
the dispersive regime can be expressed as a cavity-dependant shift on the qubit frequency or a
qubit-dependant shift on the cavity frequency. This allows us to measure the qubit with minimal
backaction (a Quantum Non-Demolition Measurement) by probing the cavity response.

In the strong dispersive regime, g
|∆| � 1, thus we can obtain the approximate solutions for the

eigenenergies by Taylor expanding Equation 4, to second order in g
∆ .

E±,n = ~nωc ± ~
∆

2

√
1 + 4n

( g
∆

)2

= ~nωc ± ~
∆

2

[
1 +

2ng2

∆2
+O

(
g4

∆4

)]
≈ ~n(ωc ± χ)± ~

2
∆ (7)

where we've de�ned χ = g2

∆ . However, this approximation only holds if 4n
(
g
∆

)2
isn't of order one.

In other words, the approximation is valid for excitation numbers n� ncrit = ∆2

4g2 [2, 3, 4].

Similarly, we can �nd the eigenstates of in the dispersive regime, by Taylor expanding Equation
5 to second order in g

∆ (using Wolfram Alpha).

cos

(
1

2
arctan

(
2g
√
n

∆

))
= 1− n

2

( g
∆

)2

+O
(
g4

∆4

)
sin

(
1

2
arctan

(
2g
√
n

∆

))
=
√
n
( g

∆

)
+O

(
g3

∆3

)

|n+〉 ≈
g
√
n

∆
|n, g〉+

(
1− ng2

2∆2

)
|n− 1, e〉 (8a)

|n−〉 ≈
(

1− ng2

2∆2

)
|n, g〉 − g

√
n

∆
|n− 1, e〉 (8b)
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This shows that the dressed states are weakly entangled qubit-cavity states, with a high prob-
ability of the wavefunction lying in the same place as the qubit-cavity excitation. Particularly,
|n+〉 represents a high probability of �nding the excitation in the cavity and |n−〉 represents a high
probability of �nding an exited qubit.

Alternatively, we can diagonalize the Hamiltonian using a unitary transformation [3] using the
Schrie�er-Wol� Transformation, hoping to understand the physics of the system better.

3.1 Schrie�er-Wol� Transformation (Linear Regime)

We can write the JC Hamiltonian as Ĥ = Ĥ0 + ~gV̂+, where Ĥ0 is the uncoupled Hamiltonian
and V+ = σ̂+â + σ̂−â

† is the interaction term. The uncoupled eigenstates found in section 2.2,
exactly diagonalize H0 (i.e. 〈n, z1|H0|m, z2〉 = En,zδnmδz1z2 , for z1, z2 ∈ {g, e}). However, the
interaction is purely o�-diagonal 〈n, z|V+|n, z〉 = 0 ∀ n ∈ Z+, z ∈ {g, e}.

The Schrie�er-Wol� Transformation is a unitary transformation which diagonalizes ĤJC . This

transformation is written as Ĥ ′ = Û†SW ĤÛSW = eŜĤe−Ŝ , where Ŝ is an arbitrary time-independent
operator.

Ĥ ′ can be expanded using the Baker-Campbell-Haussdorf formula:

Ĥ ′ = eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] +
1

2!
[Ŝ, [Ŝ, Ĥ]] +

1

3!
[Ŝ, [Ŝ, [Ŝ, Ĥ]]] + . . .

To approximately diagonalize the Hamiltonian to second order in the small parameter g
∆ , we

can choose Ŝ = g
∆ V̂− = g

∆

(
σ̂+â− σ̂−â†

)
, such that [Ĥ0, Ŝ] = ~gV̂+. This way, we're able to write

down the e�ective Hamiltonian in the dispersive regime, to �rst order in χ = g2

∆ , as in Equation
9. The complete derivation is described in Appendix B.

Ĥdisp =
1

2
~ωqσ̂z − ~ (ωc + χσ̂z)

(
â†â+

1

2

)
− 1

2
~χ (9)

This Hamiltonian can be given complementary physical implementations, depending on which
interacting subsystems we're observing [2, 1].

The Hamiltonian as arranged above can be interpreted as a pull on the cavity frequency depen-
dant the qubit state. With the qubit in the |g〉 state, the cavity frequency is pulled to ωc − χ.
On the other hand, for a qubit in the |e〉 state the cavity is pulled to ωc + χ. This e�ect can be
interpreted as dielectric inside the cavity. The state of the qubit can be related to the refractive
index of the dielectric. Changing the state of the qubit changes the e�ective cavity length and
hence the mode frequency [2, 1].

Alternatively, we can rearrange the Hamiltonian, as below, to observe a light-shift on the qubit
frequency.

Ĥdisp =
1

2
~
[
ωq − 2χ

(
â†â+

1

2

)]
σ̂z + ~ωc

(
â†â+

1

2

)
− 1

2
~χ (10)

The shift on the qubit transition frequency can be interpreted as having two contributions. The �rst
contribution, −2χâ†â is a photon-number dependant Stark shift. The second +χ is a Lamb-shift,
induced by the 1

2 photon observed in the cavity vacuum [1].

3.2 Exact Diagonalization

Ref. [3] observes that even for a small number of photons n ≈ 0.08ncrit in the resonator,
visible di�erences can be seen in the simulations of the e�ective dispersive Hamiltonian and the
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true Hamiltonian. This motivates them to exactly diagonalize the dispersive Hamiltonian. The
following derivation, fully detailed in Appendix C, is inspired by [3].

Just as in the linear regime, we transform the Hamiltonian using the unitary eŜ and expand
it using the BCH formula. However, for a complete diagonalization we set Ŝ = f(N̂)V̂−, where
N̂ = â†â+ σ̂+σ̂− is the total excitation number operator and

f(N̂) =
− arctan(2 g

∆

√
N̂)

2
√
N̂

This ensures that o�-diagonal interaction term proportional to V̂+ is eliminated. With this, we
can write the exact diagonal form of the dispersive Hamiltonian as:

Ĥ ′ = Ĥ0 −
1

2
~∆

(
1−

√
1 + 4N̂

( g
∆

)2
)
σ̂z (11)

Observe that this solution identically corresponds to the exact eigenenergies found in Equation
4. Using this result, we can de�ne the Lamb and AC-Stark shifts as

δL ≡ 〈0, e|Ĥ ′|0, e〉 − 〈0, g|Ĥ ′|0, g〉 − ~ωq

= −1

2
~∆

(
1−

√
1 + 4

( g
∆

)2
)

(12)

≈ ~
[
g2

∆

(
1− g2

∆2

)]
+O

(( g
∆

)5
)

(13)

δS(n) ≡ 〈n, e|Ĥ ′|n, e〉 − 〈n, g|Ĥ ′|n, g〉 − δL − ~ωq

=
1

2
~∆

(√
1 + 4(n+ 1)

( g
∆

)2

+

√
1 + 4n

( g
∆

)2

− 1−
√

1 + 4
( g

∆

)2
)

(14)

≈ ~n
[
g2

∆

(
1− g2

∆2

)]
+ ~n2

(
− g

4

∆3

)
+O

(( g
∆

)5
)

(15)

We can de�ne the modi�ed value of Lamb and Stark shift per photon as

χ ≡ g2

∆

(
1− g2

∆2

)
(16)

and the third-order squeezing term (∼ n2) amplitude as

ζ ≡ − g
4

∆3
(17)

Then, to third order in g
∆ , the dispersive Hamiltonian can be written as

Ĥ ′ ≈ 1

2
~
[
ωq − 2χ

(
â†â+

1

2

)]
σ̂z + ~(ωc + ζ)

(
â†â+

1

2

)
+ ~ζ

(
â†â
)2
σ̂z (18)

3.3 Cavity Pull as a Function of the Cavity Population

Just as before, we can rearrange the Hamiltonian above to show a shift in the cavity frequency.

Ĥ ′ ≈ 1

2
~ (ωq − χ) σ̂z + ~

[
ωc + ζ −

(
χ+ ζâ†â

)
σ̂z

]
â†â+

1

2
~(ωc + ζ) (19)
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Observe that the pull on the cavity frequency is not only dependant on the state of the qubit, but
also on the number of photons present in the cavity.

The linear dependance of the cavity-pull on the photon-number is only valid up to third order in
g
∆ . In other words, for n̄� ncrit. The exact shift in the cavity frequency is given by

δC(n, |g〉) ≡ 〈n+ 1, g|Ĥ ′|n+ 1, g〉 − 〈n, g|Ĥ ′|n, g〉 − ~ωc

=
1

2
~∆

(√
1 + 4(n+ 1)

( g
∆

)2

−
√

1 + 4n
( g

∆

)2
)

(20)

δC(n, |e〉) ≡ 〈n, e|Ĥ ′|n, e〉 − 〈n− 1, e|Ĥ ′|n− 1, e〉 − ~ωc

= −1

2
~∆

(√
1 + 4(n+ 1)

( g
∆

)2

−
√

1 + 4n
( g

∆

)2
)

(21)

Figure 3.3 shows the cavity pull as a function of the mean number of photons in the cavity, n̄ for
the qubit in the ground (blue) and excited (red) states. The �gure compares the cavity pull from
the exact diagonalization (solid line), given by Equations 20 and 21, to the ones from the �rst-order
(dashed line) and third-order (dotted line) approximations of the dispersive Hamiltonian (dashed
line), given by Equations 9 and 19 respectively. This result qualitatively matches the results from
Ref. [5]. 1

The �rst-order approximation of the dispersive Hamiltonian predicts a constant cavity pull, as
such signi�cantly di�ers from the true value well before ncrit. On the other hand, the third-order
approximation predicts a linear relationship between the cavity pull and n̄, closely approximating
the true trend.

Figure 3: The shift on the cavity frequency (Cavity Pull) as a function of the mean photon number
in the cavity (Cavity Population), for a system with ∆/2π = 100 MHz and g/2π = 5 MHz.
The relationship shown depends on whether the qubit is in the ground (blue) or excited state
(red). The solid, dashed, and dotted lines give this relationship for the exact diagonalization,
�rst-order approximation, and third-order approximation respectively. The vertical line indicates

ncrit ≡ ∆2

4g2 = 100 photons.

4 Drive Terms on the Hamiltonian

We can control and readout the qubit by applying coherent microwave tones on the system.
These are represented in the drive Hamiltonian, Ĥd, as superposition of a measurement tone on

1Refer to the attached Mathematica notebook cavity_pull_vs_nbar.nb for the code to generate Figure 3.3.
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the and a drive tone.

Ĥd = εm(t)
(
âeiωmt + â†e−iωmt

)
+ εd(t)

(
âeiωdt + â†e−iωdt

)
(22)

where εm(t) and εd(t) are the measurement and qubit-drive pulse envelopes respectively. ωm and
ωd are the corresponding frequencies of the applied pulses. Usually we measure at the cavity
frequency (∆cm ≡ ωc − ωm ≈ 0) and drive at the qubit frequency (∆qd ≡ ωq − ωd ≈ 0).

We can use the Schrie�er-Wol� transformation to express Ĥdrive in �rst order in g
∆ .

Ĥ ′drive ≡ Û
†
SW ĤdÛSW

= εm(t)
(
âeiωmt + â†e−iωmt

)
− g

∆
εm(t)

(
σ̂−e

iωmt + σ̂+e
−iωmt

)
+ εd(t)

(
âeiωdt + â†e−iωdt

)
− g

∆
εd(t)

(
σ̂−e

iωdt + σ̂+e
−iωdt

) (23)

To eliminate the rotating terms, we can transform into the Interaction picture given by the
unitary operator

Û(t) = exp

{
−i
[
ωm

(
â†â+

1

2

)
+

1

2
ωdσ̂z

]
t

}
This transformation ensures that

â −→ Û†(t) â Û(t) = âe−iωmt σ̂− −→ Û†(t) σ̂− Û(t) = σ̂−e
−iωdt

Thus, in the interaction picture the drive Hamiltonian becomes

Ĥ ′d,int ≡ Û†Ĥ ′dÛ

= εm(t)
(
â+ â†

)
− g

∆
εm(t)

(
σ̂−e

i(ωm−ωd)t + σ̂+e
−i(ωm−ωd)t

)
+ εd(t)

(
âe−i(ωm−ωd)t + â†ei(ωm−ωd)t

)
− g

∆
εd(t)σ̂x

(24)

Where we've used the identity σ̂−+σ̂+ = σ̂x. Consider the term ωm−ωd = (ωc−∆cm)−(ωq−∆qd) =
∆−∆cm −∆qd ≈ ∆. Thus, the corresponding terms are rotating very fast, which we may ignore
with the rotating wave approximation.

Finally, to write the complete Hamiltonian, we must express the undriven Hamiltonian in this
interaction picture. Ĥ ′ from Equation 9 commutes with Û(t), however to satisfy the Schrodinger
Equation in the Interaction picture we must consider the time-derivative of Û(t).

Ĥ ′int = Û†
(
Ĥ ′ + Ĥ ′d

)
Û − i~ Û dÛ†

dt

= Ĥ ′ + Ĥ ′d,int − ~
[
ωm

(
â†â+

1

2

)
+

1

2
ωdσ̂z

]

Therefore, in the interaction picture, the complete driven dispersive Hamiltonian (to �rst order
in g

∆ ) is given by

Ĥ ′int
~

=
∆qd

2
σ̂z + (∆cm − χσ̂z)

(
â†â+

1

2

)
+ εm(t)(â+ â†) + Ωd(t)σ̂x −

1

2
χ (25)

where we've de�ned the e�ective drive on the qubit as Ωd(t) = − g
∆εd(t).

To perform a gate on the qubit, we can input a constant drive tone, Ωd(t) = θ
2 , such that the

qubit evolves according to

Uq(t) = e−iĤt/~ = e−i(∆qσ̂z+θσ̂x)t/2

=
[
cos(∆qt)1̂ + sin(∆qt)σ̂z

] [
cos(θt)1̂ + sin(θt)σ̂x

]
= cos(∆qt) cos(θt)1̂ + sin(∆qt) cos(θt)σ̂z

+ cos(∆qt) sin(θt)σ̂x + i sin(∆qt) sin(θt)σ̂y
(26)
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For example, to perform a bit-�ip (X-gate), we can drive the qubit at ∆qd = 0, for a duration τ
such that θτ = π

2 .

Similarly, the cavity can be populated using the coherent microwave tone ε(t). This is discussed
in detail in Section 6.3.

5 Damping

5.1 The Lindblad Master Equation of the System

The density operator ρ̂ fully describes any multi-particle system. The expectation value of any
operator on this system is given by: 〈B̂〉 = trace(ρ̂B̂).

Any real physical system is never absolutely isolated, as the interactions of the system with the
environment result in a dissipation of energy, causing non-unitary time-evolution such as decay
and randomization of phase. The time-evolution of such a system (i.e. a microscopic quantum
system coupled to a larger reservoir) is given by a Lindblad Master Equation. Each super-operator
in the Lindblad Master Equation represents a non-unitary e�ect on the system, induced by the
environment.

Equation 27 is a Linblad-type Master Equation to model a circuit QED system at zero temper-
ature, that is coupled to its surroundings [6].

d

dt
ρ̂ = − i

~
[Ĥ, ρ̂] + κD[â]ρ̂+ γ1D[σ̂−]ρ̂+

γφ
2
D[σ̂z]ρ̂ (27)

where the super-operator D[Â] acts on the density matrix ρ̂ by

D[Â]ρ̂ = Âρ̂Â† − 1

2
Â†Âρ̂− 1

2
ρ̂Â†Â

Here Ĥ is the complete Hamiltonian given by Equation 25. The dissapators D[â], D[σ̂−], and
D[σ̂z] represent photon decay, qubit decay, and qubit decoherence respectively. The coe�cients κ,
γ1, and γφ/2 are the corresponding rates for these dissipation processes.

5.2 Cavity Bloch Equations

Ref [6] derive the `Cavity-Bloch equations'(CBEs). These are a set of di�erential equations
which approximately describe their system, without requiring that the Master equation be solved
directly. They assume the dispersive Hamiltonian in the linear regime, given by Equation 9.

Equation 28 is the set of Cavity Bloch Equations corresponding to the Master Equation 27.
Equations 28(c) and (d) are derived under the approximation 〈â†âσ̂i〉 ≈ 〈â†â〉〈σ̂i〉, which should
be valid for low photon numbers, where dephasing caused by photon shot noise is ignored. Similarly,
Equations 28(e), (f) and (g) are true for the semi-classical approximation 〈â†ââσ̂i〉 ≈ 〈â†â〉〈âσ̂i〉.
The entire set of CBEs is derived in detailed in Appendix D.
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d

dt
〈â〉 = −i∆cm〈â〉 − iχ〈âσ̂z〉 − iεm +

κ

2
〈â〉 (28a)

d

dt
〈σ̂z〉 = Ωd〈σ̂y〉 − γ1(1 + 〈σ̂z〉) (28b)

d

dt
〈σ̂x〉 = −

[
∆qd + 2χ

(
〈â†â〉+

1

2

)]
〈σ̂y〉 − γ2〈σ̂x〉 (28c)

d

dt
〈σ̂y〉 =

[
∆qd + 2χ

(
〈â†â〉+

1

2

)]
〈σ̂x〉 − Ωd〈σ̂z〉 − γ2〈σ̂y〉 (28d)

d

dt
〈âσ̂z〉 = −i∆cm〈âσ̂z〉 − iχ〈â〉+ Ωd〈âσ̂y〉 − iεm〈σ̂z〉 − γ1〈â〉 −

(
γ1 +

κ

2

)
〈âσ̂z〉 (28e)

d

dt
〈âσ̂x〉 = −i∆cm〈âσ̂x〉 − [∆as + 2χ(〈â†â〉+ 1)]〈âσ̂y〉 − iεm〈σ̂x〉 −

(
γ2 +

κ

2

)
〈âσ̂x〉 (28f)

d

dt
〈âσ̂y〉 = −i∆cm〈âσ̂y〉 − [∆as + 2χ(〈â†â〉+ 1)]〈âσ̂x〉 − iεm〈σ̂y〉 − Ωd〈âσ̂z〉 −

(
γ2 +

κ

2

)
〈âσ̂y〉

(28g)

d

dt
〈â†â〉 = −2εmIm〈â〉+ κ

〈
â†â
〉

(28h)

where we've de�ned the decoherence rate γ2 ≡ 1
2γ1 + γφ

5.3 Purcell Decay

In constructing the Master Equation 27, we've assumed that the dissipator terms are una�ected
by the dispersive transformation. This may not necessarily be true. Instead, Ref. [3] derive
an alternate master equation within the strong dispersive regime, introducing corrections to the
dissipator terms. Particularly, this leads to the Purcell E�ect, where the qubit can decay through
a photon channel. The Purcell decay rate is given by

γκ ≈
g2

∆2
nκ (29)

Intuitively, this can be understood as the qubit excitation partly living in the cavity. From
Equation 5, the dressed state |n+〉 corresponds to a nearly excited qubit. However, with the
system in such a state there is a probability of ng2/∆2 that the excitation is instead found in the
cavity. Multiplying this probability with the photon-decay rate approximately gives the Purcell
decay rate.

6 Measurement in Circuit QED

Circuit QED has several advantages to o�er over previous technique, such as single-electron
detection in close proximity to the qubit [2]. As stated by Ref [2] these advantages are:

1. Excellent Measurement ON/OFF Ratio: Measurement only occurs in the presence of a probe
tone. In the absence of the probe tone, backaction of the cavity on the qubit is avoided by the fact
that they're o�-resonant.

2. Necessary Dissipation Occurs Away from the Qubit: Measurement necessarily involves non-
unitary dissipation. With circuit QED this dissipation happens at some voltmeter at room temp,
rather than at a device fabricated around the qubit. Moreover, the dispersive regime ensures that
the probe-tone photons aren't absorbed by the qubit. This results in a Quantum Non-Demolition
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measurement (i.e. when the qubit stays in the |0〉 or |1〉 state, respectively, during and after
the measurement; only backaction induced by the measurement is the necessary dephasing of the
superposition state).

6.1 Microwave Field Detection

Figure 6.1 shows a schematic for the microwave �eld detection. The following discussion is
adapted from Ref. [2]

Figure 4: Schematic representation of the microwave measurement chain for �eld detection in
circuit QED, with the resonator depicted as a Fabry-Perot cavity (Sourced from Ref. [2]).

Step 1: An RF signal is applied to the input port of the resonator, after being attenuated to
reduce the thermal radiation. We can de�ne this signal as a classical AC voltage with amplitude
ARF , frequency ωRF , and phase φLO:

VRF (t) = ARF cos(ωRF t− φLO)

Step 2: The circulator isolates the �eld into (b̂in(t)) and out of (b̂out(t)) the resonator's output

port. b̂out is sent to a series of ampli�ers, whereas b̂out is suppressed by a dummy output.

In practice the various components have a �nite bandwidth. Let's assume that it is wider than
bandwidth of the signal of interest, b̂out(t). To account for this �nite bandwidth, we can consider
the �ltered output signal âf (t).

âf (t) = (f ∗ b̂out)(t)

=

∫ ∞
−∞

f(t− τ) b̂out(τ) dτ

=

∫ ∞
−∞

f(t− τ)
[√

κâ(τ) + b̂in(τ)
]
dτ

where we've used the boundary condition: b̂out− b̂in =
√
κb̂. This means that the �eld outside the

cavity is equal to the intra-cavity �eld that has left the cavity; since photon decay happens at a
rate κ, then the �eld ought to decay at

√
κ.

The �lter function is normalized to
∫∞
−∞ |f(t)|dt = 1, such that

[
b̂f (t), b̂†f (t)

]
= 1.

Step 3: The output �eld is ampli�ed by a quantum limited ampli�er �rst and then by a HEMT
(High Electron Mobility Transfer) ampli�er.

13



Assuming the ampli�ers are phase preserving (i.e. they amplify both quadratures equally), we
have that the �eld leaving the ampli�ers, âamp is:

âamp =
√
G âf +

√
G− 1 ĥ†

where G is the power gain and ĥ† represents the noise added by the ampli�er (known as idler
noise). Note that the bosonic commutation relation is preserved.[

âamp, â
†
amp

]
= G

[
âf , â

†
f

]
+ (G− 1)

[
ĥ†, ĥ

]
= G− (G− 1) = 1

Since the I and Q quadratures are canonically conjugate, ampli�cation without noise would violate
the Heisenberg Uncertainty Principle. This point is discussed in detail in Section 6.2

The voltage after ampli�cation is

V̂amp(t) =

√
~ωRFZtml

2

(
âampe

−iωRF t + â†ampe
+iωRF t

)
=

√
G~ωRFZtml

2

(
âfe
−iωRF t + â†fe

+iωRF t
)

+ V̂amp,noise

=

√
G~ωRFZtml

2

[
(â†f + âf ) cos(ωRF t) + i(â†f − âf ) sin(ωRF t)

]
+ V̂amp,noise

de�ne the conjugate operators X̂f ≡ Re{âf} =
â†f + âf

2
, and P̂f ≡ Im{âf} = i

â†f − âf
2

V̂amp(t) =
√

2G~ωRFZtml
[
X̂f cos(ωRF t) + P̂f sin(ωRF t)

]
+ V̂amp,noise (30)

Step 4: The signal is mixed with the local oscillator (LO), digitized by an ADC and processed
with an FPGA.

The goal of the IQ-Mixer is to isolate the X̂f and P̂f data from the V̂amp signal. The X̂f and P̂f
data amplitude modulates signals that are a π

2 out-of-phase apart. In other words, V̂amp is a linear
combination of two linearly independent signals. To do this lets consider multiplying an arbitrary
signal ARF cos(ωRF t− φRF ), with a local oscillator ALO cos(ωLOt− φLO).

ARF cos(ωRF t− φRF ) ·ALO cos(ωLOt− φLO)

=
1

2
ARFALO

[
cos
(

(ωRF − ωLO)t− (φRF − φLO)
)

+ cos
(

(ωRF + ωLO)t− (φRF + φLO)
)]

Lo-Pass Filter−−−−−−−−−→ 1

2
ARFALO cos

(
(ωRF − ωLO)t− (φRF − φLO)

)
The lo-pass �ltered signal oscillates at an intermediate frequency (IF) ωIF = ωRF − ωLO, with a
phase φIF = φRF − φLO.

From Equation 30, observe that φRF = 0 or π
2 for the X̂f and P̂f respectively. As such, we can

set the coe�cients on the X̂f or P̂f signals to 0 or 1 by multiplying with an in-phase or quadrature
local oscillator.

V̂mixer,I = VIF

[
X̂f cos(ωRF t) cos(ωLOt) + P̂f sin(ωRF t) cos(ωLOt)

]
+ V̂noise,I

Lo-Pass Filter−−−−−−−−−→ VIF

[
X̂f cos(ωIF t) + P̂f sin(ωIF t)

]
+ V̂noise,I (31)

V̂mixer,Q = VIF

[
X̂f cos(ωRF t) sin(ωLOt) + P̂f sin(ωRF t) sin(ωLOt)

]
+ V̂noise,Q

Lo-Pass Filter−−−−−−−−−→ VIF

[
− X̂f sin(ωIF t) + P̂f cos(ωIF t)

]
+ V̂noise,Q (32)
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where all noise is accumulated in V̂noise,I/Q, the amplitude is represented as VIF = KALO
√
GZtml~ωRF /2,

and K represents the conversion losses.

A Homodyne Measurement sets ωRF = ωLO . In other words, ωIF = 0, simply making the

V̂mixer,I = VIF X̂f + V̂noise,I and V̂mixer,Q = VIF P̂f + V̂noise,Q. However, the measured signal is
purely in DC, making it succeptible to 1/f noise and drift.

To correct this, a Heterodyne Measurement leaves the signal to oscillate at ωIF . In other words,

the V̂amp,I/Q rotate in the X̂f -P̂f plane at the frequency ωIF , as shown in Figure 6.1. To extract

the X̂f -P̂f , we can rotate the vectors by −ωIF t (in other words, switch to a frame rotating at
ωIF ).

Figure 5: The I-Q signals measured with a heterodyne measurement rotate in the X̂f -P̂f plane at
the frequency ωIF .

6.2 Notes on Noise and the Heisenberg Uncertainty Principle

Being able to measure a non-Hermitian operator âf is equivalent to measuring the non-commuting

operators X̂f = Re{âf} and P̂f = Im{âf}. This is seemingly a violation of the Heisenberg Uncer-
tainty Principle.

The added noise terms V̂noise,I/Q are crucial for avoiding this paradox. They allow us to measure
both the position and momentum values, with an associated uncertainty. This can be further
understood by representing the IQ mixer as a beam-splitter, shown in Figure 6.2. The inputs
to the beam-splitter, âamp and v̂, should be completely unrelated. As such âamp and v̂ must
commute. Since the beam splitting is a unitary, the I and Q quadratures leaving the mixer must
be commuting operators as well. This allows us to simultaneously measure them both.

6.3 Dispersive Readout of the Steady State Field

This derivation follows the discussion from Ref. [2], Section V.C.1.

For a pulsed measurement, we initialize the qubit in |g〉 or |e〉 and then have a constant mea-
surement pulse. i.e. Ωd(t) = 0 and εm(t) = ε.

Observe that the cavity frequency is dependant on the state of the qubit. As pointed out by Ref.
[2], this setup resembles the Stern-Gerlach experiment. There, the magnetic �eld gradient entagles
the spin state of the atom with the linear momentum of the atom. Thus, measuring the �nal
position of the atom on the detector uniquely identi�es the spin state of the atom, provided there
isn't any overlap between the �nal position distributions for the two spin states. This e�ectively
performs a projective measurement of the spin. Similarly, a measurement of the cavity �eld resolves
the state of the qubit. Moreover, since Ĥdisp commutes with σ̂z this is a Quantum Non-Demolition
experiment (as opposed to the Stern-Gerlach experiment, which is destructive). This means any
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Figure 6: Schematic representation of an IQ mixer as a beam-splitter. This representation
accounts for the splitting of the signal âamp, as well as the added vacuum noise (due to internal
modes). The two outputs are combined with a local oscillator (LO) at mixers. By phase shifting
the LO by π/2 in one of the two arms, it is possible to simultaneously measure the two quadratures
of the �eld. Sourced from Ref. [2].

back-action induced by the measurement is in collapsing a qubit superposition in superposition of
|g〉 and |e〉, into one of the measurement eigenstates. The �QND-ness" of the measurement ensures
that subsequent measurements aren't random, but reproduce the �rst measurement result.

The �rst CBE (Equation 28a) gives the time-evolution of the cavity �eld. We can state that the
qubit is in an eigenstate, such that σ̂z = ±1, and consider the system in steady state, d

dt â(t) = 0.

〈â〉g/e =
−iε

κ
2 − i(∆cm ∓ χ)

=

[
−ε

(∆cm ∓ χ)2 +
(
κ
2

)2
] [

∆cm ∓ χ+ i
κ

2

]
(33)

Thus the expected cavity �eld would just be one of two points in the IQ, depending on the qubit
state. The uncertainty in 〈â〉 causes the response to appear as �blobs� around the expectation
value. The Wigner functions of these responses show coherent states centered around 〈â〉g/e [2].

To increase the �delity of single-shot readout, we must reduce the overlap between the two
coherent states. The separation between the two coherent states should depend linearly on the
measurement amplitude.

〈â〉g − 〈â〉e =
2εχ

χ2 − (∆cm − iκ2 )2
(34)

The square of the expected amplitude is,

|〈â〉g/e|2 =
ε2

(∆cm ∓ χ)2 + (κ2 )2
(35)

In frequency space, this quantity is a Lorentzian with an amplitude of ε2π/κ and a linewidth of
κ. The Lorentzian is centered at ωm = ωr ∓ χ for the qubit in |g〉 or |e〉 respectively. This re�ects
the interpretation in Section 3.1, that the cavity frequency is pulled to ωr ∓ χ depending on qubit
state.

Similarly, the expected phase shift is,

φg/e ≡ arctan

(
Re{〈â〉g/e}
Im{〈â〉g/e}

)
= arctan

(
∆r ∓ χ
κ/2

)
(36)

Therefore, the phase shift is a step which drops at ωm = ωr ∓ χ with respect to the qubit state.
For a small linewidth κ, we expect a very sharp step.

Figure 7 shows the transmission (dashed lines) and phase-shift (solid lines) spectra for the qubit
in the ground (blue) and excited (red) states [2].
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Figure 7: Resonator transmission (dashed lines) and corresponding phase shifts (full lines) for
the two qubit states (blue: ground; red: excited). When driving the resonator close to its pulled
frequencies, the resonator response strongly depends on the state of the qubit. Sourced from Ref.
[2]

6.4 Cavity Population as a Function of Drive Power

The mean photon number in the cavity is proportional to the square of the expected amplitude
of the coherent state, |〈â〉g/e|2, as given by Equation 35. However, as we saw earlier, the complete
diagonalization alludes that the cavity frequency shifts as it gets populated. Therefore, the results
from the previous section would only be valid at n̄� ncrit [2, 7].

Ref. [7] derives the change in the cavity frequency and mean photon numbers as function of the
drive power, by iteratively calculating both quantities. Figure 6.4 shows their results, for a model
with the qubit as a two-level system (in panels (a) and (d)), three-level system (in (c) and (e)),
and a six-level system (in (c) and (f)). They show that the cavity frequency and photon number
depends on the qubit state (subscript i) as well.

Let's consider the two-level system model. Here, we can see that at higher powers, the cavity pull
suddenly reduces to zero, and the cavity responds as though ignoring the qubit. This is coupled
with the mean cavity population steeply increasing by several orders of magnitude at a power of
40 dB.

Figure 8: The cavity resonant frequency, ωri and the mean photon number, ni as a function of
the drive power, derived by Ref. [7]. The �gure shows results from a model with the qubit as a
two-level system (in panels (a) and (d)), three-level system (in (c) and (e)), and a six-level system
(in (c) and (f)). The solid red, dotted blue, and dashed gray lines [only in (c) and (f)] shows trends
when the qubit is in the |g〉, |e〉, or |f〉 states, respectively. In panels (a) through (c), The dashed
green line shows the bare cavity frequency. Sourced from [7].
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7 Qubit Spectroscopy

7.1 Qubit Spectrum for a Vacuum Cavity

If we state that 〈â†â〉 = 0 and consider the system in steady state ρ̇ = 0, then the Cavity-Bloch
equations corresponding to the qubit state become

0 =
d

dt
〈σ̂z〉 = Ωd〈σ̂y〉 − γ1(1 + 〈σ̂z〉) (37a)

0 =
d

dt
〈σ̂x〉 = − (∆qd + χ) 〈σ̂y〉 − γ2〈σ̂x〉 (37b)

0 =
d

dt
〈σ̂y〉 = (∆qd + χ) 〈σ̂x〉 − Ωd〈σ̂z〉 − γ2〈σ̂y〉 (37c)

Solving these equations simultaneously, we can derive the steady-state population of the qubit
Pe [2]. This derivation is described in detail in Appendix E.

Pe = 1− Pg =
〈σ̂z〉+ 1

2
=

Ω2
d/2

(γ1/γ2)(∆qd + χ)2 + γ1γ2 + Ω2
d

(38)

The steady state qubit population, Pe has a Lorentzian lineshape with respect to the drive
frequency on the qubit ωd. The Lorentzian is centered at the Lamb-shifted qubit frequency ωq +χ.

In the limit of a strong qubit drive i.e. a large Ωd, the steady-state qubit population saturates
at Pe = Pg = 1

2 [2].

The qubit spectrum has a linewidth (full width at half maximum), γq, given by Equation 39.

γq = 2

√
γ2

γ1
Ω2
d + γ2

2 (39)

The linewidth of the qubit spectrum is therefore dependant on the following:

1. Power Broadening: As the qubit drive power is increased from zero, the linewidth of the
spectrum expands from 2γ2 to the quantity given by 39. This can intuitively be understood by
considering the driven Hamiltonian of an undamped qubit:

Ĥq =
∆qd

2
σ̂z +

Ωd
2
σ̂x

When the qubit is driven far away from its resonant frequency, i.e. ∆qd >> Ωd, then the qubit
vector mostly rotates around Z-axis of the Bloch Sphere. As such, the qubit's population is nearly
unchanged. However, as we increase the drive power Ω2

d, we can rotate the qubit-vector around
the X-axis even when the qubit-drive is su�ciently detuned from the resonant frequency.

2. Qubit Relaxation, T1 = 1/γ1: T1 causes the qubit to rotate around the X-axis of the Bloch

sphere as well. The factor γ2
γ1

= 1
2 +

γφ
γ1

demonstrates the competing rates of rotation around the
X and Z axes, induced by environmental damping.

3. Qubit Decoherence, T2 = 1/γ2: As mentioned earlier, the unbroadened spectrum has a
linewidth of 2γ2 = 2T2. In practice, the qubit's T2 is determined from a Ramsey-fringe or Hahn-
Echo experiment [2].

4. Finite Width Pulses: Just as with pulses on the cavity, we can't have an in�nitely long
constant tone on the qubit. Instead, we excite the qubit with a long square pulse, that approximates
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a constant drive. Following a similar explanation as with the cavity, we see a wider sinc-like function
when the pulse length, τd is short compared to the the qubit's timescale 1/γq. As we increase τd,
the oscillations induced by the sinc dissapear and we can begin to recover the Lorentzian.

Intuitively, shorter square pulses are comprised of a wider range of frequencies. Thus pulses
which are detuned from the resonant frequency still have a non-zero component of the resonant
frequency. As such, these pulses are still able to excite the qubit to some extent.

7.2 AC-Stark Shift and Measurement-Induced Dephasing

In the previous discussion, we assumed that the cavity is in its vacuum state, i.e. 〈â†â〉 → 0.
However, carrying out the above derivation with for a constant cavity population 〈â†â〉 = n̄, leads
to the qubit frequency being shifted by an average value of 2χn̄.

The shift in the qubit frequency depending on n̄ and prior knowledge of χ, allows one to infer
the intra-cavity population as a function of the measurement power [8, 2]. However, as stated to
in Section 3.2, the linear cavity pull is only valid in the regime where n̄� ncrit. This is discussed
in detail in Section 8.

While we've discussed the average shift in the qubit frequency, the actual shift is given by 2χâ†â,

as alluded to by Equation 10. Unlike 〈â†â〉 which may be constant, the measurement of â†â is
stochastic. Therefore, when the cavity is forced into a coherent state by the measurement tone,
each Fock State |n〉 of the coherent �eld contributes to its own qubit frequency shift 2χn.

Ref. [5] derive the qubit spectrum under two models.

1. Model 1: Gaussian Approximation for the Photon Shot Noise

Firstly they consider the photon-number statistics as Gaussian noise around the mean photon
number n̄. This is equivalent to assuming Gaussian noise for the relative phase of the coherent
state, as ∆N∆φ = ~/2. This assumption results in the qubit absorption spectrum Equation 40
[5].

S̃(ω) =
1

2π

∞∑
j=0

(−2γ̃m/κ)j

j!

γ̃j/2

(∆qd + 2χ
[
n̄+ 1

2

]
)2 + (γ̃j/2)2

(40)

where γ̃m = 2κn̄ [arctan(2χ/κ)]
2 ≈ 8χ2n̄/κ is the measurement-induced dephasing rate, γ̃j =

2(γ2 + γ̃m) + jκ is the linewidth for the jth Lorentzian.

Therefore, in this model, the qubit spectrum is given as a sum of Lorentzians, all of which
are centered around the mean AC-Stark shift frequency. The the Lorentzians are scaled by a
Poissonian-like distribution (up to a factor) with mean 2γ̃m/κ. The linewidth of the Lorentzians
increases linearly with the index j.

If the measurement induced dephasing rate γ̃m is much smaller than the cavity decay rate κ/2,
then the mean of the Poisson distribution is small and the qubit spectrum essentially comprises of
terms with smaller linewidths. Therefore, the spectrum is has a Lorentzian lineshape, where the
linewidth scales with n̄ [2].

On the other hand, if γ̃m � κ/2, then the qubit spectrum consists of more terms 2, each with
a wider linewidth, resulting in a wider Gaussian-like pro�le, whose linewidth scales as

√
n̄. The

square root dependance re�ects the coherent nature of the cavity �eld. On the other hand, for a
thermally populated cavity a n̄(n̄ + 1) dependance is observed. The condition γ̃m � κ/2 can be
understood as the qubit dephasing before the cavity has time to reach steady state [5, 2].

Since, γ̃m is proportional to n̄, we expect a Lorentzian-like lineshape for n̄ � (κ/4χ)2 and a
Gaussian-like lineshape for n̄� (κ/4χ)2. The broadening of the qubit spectrum due to the mean

2The variance of a Poissonian distribution is directly proportional to its mean.
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cavity population is known as Measurement Induced Dephasing [5, 2].

The AC Stark shift and measurement induced dephasing e�ects are both shown in 7.2(a). Ob-
serve that as the cavity population increases, qubit peak broadens and is shifted by 2χ〈â†â〉.

2. Model 2: Positive P-Integration of the Master Eqaution

Model 1 only considers the average qubit frequency shift, 2χ〈â†â〉. However, the actual shift is
given by 2χâ†â [2]. As such the true photon number statistics are relevant. As such, Ref [5] are
motivated to go beyond the Gaussian approximation by integrating the Master Equation given by
27.

Using a Polaron Transformation, the cavity is eliminated out of the Master Equation, and the
measurement induced dephasing rate in the dispersive regime is expressed as

γm(t) = −2χIm[〈â〉g(t)〈â〉∗e(t)]

In the long time limit, the measurement induced dephasing rate is proportional to the distance
between the two coherent states [5]. Intuitively, if the measurement becomes more projective in
the qubit's σ̂z basis, then �more information �ows out of the qubit� and it dephases faster.

γm =
κ

2
|〈â〉e − 〈â〉g|2

=
κχ2(n̄g + n̄e)

∆2
cm + χ2 + (κ/2)2

(41)

where n̄g/e = |〈â†â〉| is the average cavity population depending on the qubit state. If we take
∆rm = 0, then n̄g = n̄e ≡ n̄ for a TLS and γm scales linearly with n̄.

In this model, the qubit spectrum is given by Equation 42 [5].

S(ω) =
1

π

∞∑
j=0

Re

{
µje−µ

j!

1

γj/2− i(ω − ωj)

}
(42)

where γj = 2(γ2 + γm) + jκ

ωj = (ωq + χ) + χ(n̄g + n̄e)−
2χ

κ
γm + j(χ+ ∆cm)

µ = 2γm

(
1

κ
− 1

κ/2 + i(∆cm + χ)

)

In general, the spectrum is a sum of Lorentzians with linewidths γj . However, unlike the result
from Method 1, Equation 42 describes an asymmetric qubit spectrum as each Lorentzian is peaked
at its own frequency ωj . The spectral amplitudes are distributed with a Poissonian distribution
with mean µ.

When χ � κ, then the seperation between the peaks is much greater than the individual
linewidths. As shown in Figure 7.2(b), the qubit peaks corresponding to AC Stark Shifts by each
Fock State |n〉, are spectroscopically discernable. Moreover, as µ → 2γm/κ the mean AC Stark
shifted frequency is given by the more familiar result from Method 1.

ω̄ = (ωq + χ) + χ(2n̄)− 2χ

κ
γm + µχ (at ∆cm = 0 )

= (ωq + χ) + 2χn̄− 2χ

κ
γm + χ

(
2γm
κ

)
= ωq + 2χ

(
n̄+

1

2

)

On the other hand, when χ / κ, the results from this method resemble those from Method 1.
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Figure 9: Excited state population as a function of the qubit drive frequency. For a system in the
(a) weak dispersive regime with χ/2π = 0.1 MHz and (b) strong dispersive regime with χ/2π = 5
MHz. (a) Shows the qubit peak broadening due to measurement induced dephasing, whereas (b)
shows the number-splitting of the qubit spectrum. The resolved peaks in (b) correspond to di�erent
cavity photon numbers. In both plots, the spectroscopy drive amplitude is �xed to Ωd/2π = 0.1
MHz and the damping rates are γ1/2π = κ/2π = 0.1 MHz. In (a) the measurement drive is on
resonance with the bare-cavity frequency (i.e. ∆cm = 0) with an amplitude of εm ∈ {0, 0.2, 0.4}
MHz for the light blue, blue, and dark blue lines, respectively. In (b) the measurement drive is at
the pulled cavity frequency (i.e. ∆cm = χ with an amplitude of ε/2π = 0.1 MHz) (Sourced from
Ref. [2]).

This is because (at ∆cm = 0),

γm = 2n̄κ

 1(
κ/2
χ

)2

+ 1

 −→ 8n̄χ2

κ
= γ̃m

µ −→ 2γ

κ
≈ 2γ̃m

κ
ωj −→ ωq + 2χ

(
n̄+

1

2

)

Figure 7.2 shows the qubit spectrum as a function of χ/κ. As this parameter is increased,
the Gaussian approximation breaks down and we enter the �Number Splitting Regime�, where the
individual spectral peaks are discernable.

8 Experiments with HouckLab - Calibrating the Mean Pho-
ton Number
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Figure 10: The spectrum S(ω), given by Equation 42, as a function of χ/κ. The measurement tone
is detuned at ∆cm = χ, such that the cavity is always driven at the ground-state pulled frequency,
ωc − χ. The dephasing rate is set to γ2 = 7.6κ and the average photon number is set to n̄ = 2.
Inset: Spectrum at χ/κ = 20, where number-splitting should be observable. Sourced from Ref.
[5].

Appendix A Commutator Relations

[â, â†] = 1 [â, â†â] = â [â†, â†â] = −â†

[σ̂+, σ̂−] = σ̂z [σ̂±, σ̂z] = ∓2σ̂± [σ̂i, σ̂j ] = 2εijkσ̂k

where i, j ∈ {x, y, z} and εijk is the Levi-Cavita tensor.

Appendix B Derivation of the Dispersive Hamiltonian in the
Linear Regime

As stated in Section 3.1, we choose Ŝ = g
∆ V̂− = g

∆

(
σ̂+â− σ̂−â†

)
, such that [Ĥ0, Ŝ] = ~gV̂+.

[Ĥ0, Ŝ] =
1

2
~ωq

[
σ̂z,

g

∆

(
σ̂+â− σ̂−â†

)]
+ ~ωc

[
â†â− 1

2
,
g

∆

(
σ̂+â+ σ̂−â

†)]
=

1

2
~ωq ·

g

∆

(
[σ̂z, σ̂+]â− [σ̂z, σ̂−]â†

)
+ ~ωc ·

g

∆

(
σ̂+[â†â, â]− σ̂−[â†â, â†]

)
= ~ωq ·

g

∆

(
σ̂+â+ σ̂−â

†)+ ~ωc ·
g

∆

(
−σ̂+â− σ̂−â†

)
= ~ (ωq − ωc) ·

g

∆

(
σ̂+â+ σ̂−â

†)
= ~gV̂+

Then, using the Baker-Campbell-Haussdorf formula, we can expand Ĥ ′ in terms of the small
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parameter g2

∆ .

Ĥ ′ = Ĥ + [Ŝ, Ĥ] +
1

2!
[Ŝ, [Ŝ, Ĥ]] +

1

3!
[Ŝ, [Ŝ, [Ŝ, Ĥ]]] + . . .

=
(
Ĥ0 + ~gV̂+

)
+ ~

(
−gV̂+ +

g2

∆
[V̂−, V̂+]

)
+

1

2
~

(
−g

2

∆
[V̂−, V̂+] +

(
g2

∆

)2

[V̂−, [V̂−, V̂+]]

)

+O

((
g2

∆

)2
)

= Ĥ0 +
~g2

2∆
[V̂−, V̂+] +O

((
g2

∆

)2
)

≈ Ĥ0 +
~g2

2∆

[ (
σ̂+â− σ̂−â†

)
,
(
σ̂+â+ σ̂−â

†) ]
= Ĥ0 +

1

2
~χ
(
[σ̂+â, σ̂−â

†]− [σ̂−â
†, σ̂+â]

)
where χ ≡ g2

∆

= Ĥ0 + ~χ[σ̂+â, σ̂−â
†]

= Ĥ0 − ~χ
(
σ̂zâ
†â+ σ̂+σ̂−

)
= Ĥ0 − ~χ

(
σ̂zâ
†â+

1

2

(
σ̂z + 1̂

))

This gives the dispersive Hamiltonian to �rst order in χ = g2

∆ (as in Equation 9).

Ĥdisp =
1

2
~ωqσ̂z − ~ (ωc + χσ̂z)

(
â†â+

1

2

)
− 1

2
~χ (43)

Appendix C Derivation of the Exact Diagonalization of the
Dispersive Hamiltonian

As stated in 3.2, the following derivation is inspired by Ref. [3].

Just as in the Linear Regime, the anti-Hermitian operator V− is key for this diagonalization.
The total excitation number N̂ = â†â+ σ̂+σ̂− is also important, as it commutes with Ĥ as well as
V̂−. We set Ŝ = f(N̂)V̂−, where f is the function to be determined.

Recall from the Linear Regime that [V̂−, Ĥ0] = −~∆V̂+. Using this result, the unitary transfor-

mation of Ĥ by eŜ yields

Ĥ ′ =
(
Ĥ0 + ~gV̂+

)
+ f(N̂)

(
[V̂−, Ĥ] + ~g[V̂−, V̂+]

)
+

1

2!
f2(N̂)

(
[V̂−, [V̂−, Ĥ0]] + ~g[V̂−, [V̂−, V̂+]]

)
+

1

3!
f3(N̂)

(
[V̂−, [V̂−, [V̂−, Ĥ0]] + ~g[V̂−, [V̂−, [V̂−, V̂+]]]]

)
+ . . .

= Ĥ0 + ~
(
g − f(N̂)∆

)
V̂+ + ~f(N̂)

(
2g − f(N̂)∆

2!

)
[V̂−, V̂+]

+ ~f2(N̂)

(
3g − f(N̂)∆

3!

)
[V̂−, [V̂−, V̂+]] + . . .
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We can use the results from the Linear Regime to simplify the commutator terms involving V̂−
and V̂+.

[V̂−, V̂+] = −2
(
σ̂zâ
†â+ σ̂+σ̂−

)
= −2

(
â†â+ σ̂+σ̂−

)
σ̂z = −2N̂ σ̂z

[V̂−, [V̂−, V̂+]] = −2N̂ [V̂−, σ̂z] = −2N̂
(
[σ̂+, σ̂z]â− [σ̂−, σ̂z]â

†) = 4N̂ V̂+

[V̂−, [V̂−, [V̂−, V̂+]]] = 4N̂ [V̂−, V̂+] = −2(4)N̂2σ̂z

[V̂−, [V̂−, [V̂−, [V̂−, V̂+]]]] = −2(4)N̂2[V̂−, σ̂z] = 42N̂2V̂+

In general,

[V̂−, [V̂−, [V̂−, . . . , V̂+]]]︸ ︷︷ ︸
2m times

= 4mN̂mV̂+ =
(

2
√
N̂
)2m

V̂+

[V̂−, [V̂−, [V̂−, [V̂−, . . . , V̂+]]]]︸ ︷︷ ︸
2m+1 times

= −2(4)mN̂m+1σ̂z = −2N̂
(

2
√
N̂
)2m

σ̂z

Using this result, we can write Ĥ ′ as

Ĥ ′ = Ĥ0 + ~

[ ∞∑
m=0

(
(2m+ 1)g − f∆

(2m+ 1)!

)(
2f
√
N̂
)2m

]
V̂+

− 2~N̂

[ ∞∑
m=0

(
2(m+ 1)g − f∆

2(m+ 1)!

)(
2f
√
N̂
)2m+1

]
σ̂z

= Ĥ0 + ~

[
∆ sin(2f

√
N̂)

2
√
N̂

+ g cos(2f
√
N̂)

]
V̂+

− 2~N̂

[
g sin(2f

√
N̂)

2
√
N̂

+
∆[1− cos(2f

√
N̂)]

4N̂

]
σ̂z

To complete the diagonalization we choose

f(N̂) =
− arctan(2 g

∆

√
N̂)

2
√
N̂

such that the o�-diagonal interaction term proportional to V̂+ is eliminated. Finally, we get the
exact diagonal form as:

Ĥ ′ = Ĥ0 −
1

2
~∆

(
1−

√
1 + 4N̂

( g
∆

)2
)
σ̂z (44)

Appendix D Derivation of the Cavity Bloch Equations

Before we dive into the physics, consider the following lemmas.

Lemma D.1. For any pair of operators Â and B̂ acting on a system described by the density

matrix ρ̂,
trace([B̂, ρ̂]Â) = 〈[Â, B̂]〉
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Proof:

trace([B̂, ρ̂]Â) = trace(B̂ρ̂Â− ρ̂B̂Â)

= trace(B̂ρ̂Â)− trace(ρ̂B̂Â)

= trace(ρ̂ÂB̂)− trace(ρ̂B̂Â) using the circular property of trace

= trace(ρ̂(ÂB̂ − B̂Â))

= 〈[Â, B̂]〉

Lemma D.2. For any pair of operators Â and B̂ acting on a system described by the density

matrix ρ̂,

trace(D[B̂]ρ̂ â) =

〈
B̂†âB̂ − 1

2
ÂB̂†B̂ − 1

2
B̂†B̂Â

〉

Proof:

trace(D[B̂]ρ̂ Â) = trace

(
B̂ρ̂B̂†Â− 1

2
B̂†B̂ρ̂Â− 1

2
ρ̂B̂†B̂â

)
= trace( B̂ρ̂B̂†Â )− 1

2
trace( B̂†B̂ρ̂Â )− 1

2
trace( ρ̂B̂†B̂Â )

= trace( ρ̂B̂†ÂB̂ )− 1

2
trace( ρ̂ÂB̂†B̂ )− 1

2
trace( ρ̂B̂†B̂Â )

= trace

(
ρ̂

(
B̂†ÂB̂ − 1

2
ÂB̂†B̂ − 1

2
B̂†B̂â

))
=

〈
B̂†ÂB̂ − 1

2
ÂB̂†B̂ − 1

2
B̂†B̂Â

〉

Now, let's consider the time-evolution of expectation value of an operator â. Let's only consider
time-invariant operators i.e. d

dt â = 0. Then,

d

dt
〈â〉 =

d

dt
trace(ρ̂â) = trace( ˙̂ρâ)

The Master equation gives the expression for ˙̂ρ. Expanding the trace for each term and using
Lemmas D.1 and D.2, obtain equation 45.

d

dt
〈â〉 = − i

~
〈[â, Ĥ]〉+ κ

〈
â†ââ− 1

2
ââ†â− 1

2
â†ââ

〉
+ γ1

〈
σ̂+âσ̂− −

1

2
âσ̂+σ̂− −

1

2
σ̂+σ̂−â

〉
+ γφ

〈
σ̂zâσ̂z −

1

2
âσ̂2

z −
1

2
σ̂2
z â

〉 (45)

Particularly, observe that if â is just in the photonic Hilbert space, then the 3rd and 4th terms
vanish. Similarly, if â is just in the qubit's Hilbert space, then the 2nd term vanishes.

If we go into a rotating frame with U(t) = exp(~ωmâ†â + 1
2ωsσ̂z), then we can just use the

Hamiltonian in this frame, given by Equation 46.

Ĥ ′

~
=

(
∆as + χ

2

)
σ̂z + (∆cm + χσ̂z)â

†â+ εm(t)(â+ â†) +d (t)σ̂x (46)

In this frame, the CBEs follow directly from Equation 45. The �rst CBE describes the evolution
of the photonic-annihilation operator. Using Equation 45, we have that

d

dt
〈â〉 = − i

~
〈[â, Ĥ]〉+

κ

2

〈
â†â2 − ââ†â

〉
= −i∆cm〈[â, â†â]〉 − iχ〈[â, σ̂zâ†â]〉 − iεm +

κ

2

〈
[â†, â]â

〉
= −i∆cm〈â〉 − iχ〈âσ̂z〉 − iεm +

κ

2
〈â〉
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Similarly, we can derive second CBE from the paper, which describes the evolution of the Pauli-Z
matrix.

d

dt
〈σ̂z〉 = − i

~
〈[σ̂z, Ĥ]〉+ γ1

〈
σ̂+σ̂zσ̂− −

1

2
σ̂zσ̂+σ̂− −

1

2
σ̂+σ̂−σ̂z

〉
= −iχ〈[σ̂z, σ̂zâ†â]〉 − iΩd〈[σ̂z, σ̂x]〉+ γ1 〈(2|e〉〈e|)〉

= Ωd〈σ̂y〉 − γ1〈1̂ + σ̂z〉

= Ωd〈σ̂y〉 − γ1(1 + 〈σ̂z〉)

Likewise, the evolution of the Pauli-X and Pauli-Y matrices can also be derived from Equation 45.
For this derivation, we make the approximation 〈â†âσ̂i〉 ≈ 〈â†â〉〈σ̂i〉, as suggested by Ref [6]. This
approximation should be valid for low photon numbers, where dephasing caused by photon shot
noise is ignored.

d

dt
〈σ̂x〉 = − i

~
〈[σ̂x, Ĥ]〉+ γ1

〈
σ̂+σ̂xσ̂− −

1

2
σ̂xσ̂+σ̂− −

1

2
σ̂+σ̂−σ̂x

〉

+ γφ

〈
σ̂zσ̂xσ̂z −

1

2
σ̂xσ̂

2
z −

1

2
σ̂2
z σ̂x

〉

= −iχ〈[σ̂x, σ̂zâ†â]〉 − i
(

∆as + χ

2

)
〈[σ̂x, σ̂z]〉 −

γ1

2
〈σ̂x〉 − γφ〈σ̂x〉

= −iχ〈[σ̂x, σ̂z]â†â〉 − (∆as + χ) 〈σ̂y〉 −
(γ1

2
+ γφ

)
〈σ̂x〉

= −2χ〈â†âσ̂y〉 − (∆as + χ) 〈σ̂y〉 −
(γ1

2
+ γφ

)
〈σ̂x〉

≈ −
[
∆as + 2χ

(
〈â†â〉+

1

2

)]
〈σ̂y〉 −

(γ1

2
+ γφ

)
〈σ̂x〉

d

dt
〈σ̂y〉 = − i

~
〈[σ̂x, Ĥ]〉+ γ1

〈
σ̂+σ̂yσ̂− −

1

2
σ̂yσ̂+σ̂− −

1

2
σ̂+σ̂−σ̂y

〉

+ γφ

〈
σ̂zσ̂yσ̂z −

1

2
σ̂yσ̂

2
z −

1

2
σ̂2
z σ̂y

〉

= −iχ〈[σ̂y, σ̂zâ†â]〉 − i
(

∆as + χ

2

)
〈[σ̂y, σ̂z]〉 − iΩd〈[σ̂y, σ̂x]〉 − γ1

2
〈σ̂x〉 − γφ〈σ̂x〉

= −iχ〈[σ̂y, σ̂z]â†â〉+ (∆as + χ) 〈σ̂x〉 − Ωd〈σ̂z〉 −
(γ1

2
+ γφ

)
〈σ̂y〉

= 2χ〈â†âσ̂x〉+ (∆as + χ) 〈σ̂y〉 − −Ωd〈σ̂z〉 −
(γ1

2
+ γφ

)
〈σ̂y〉

≈
[
∆as + 2χ

(
〈â†â〉+

1

2

)]
〈σ̂x〉 − Ωd〈σ̂z〉 −

(γ1

2
+ γφ

)
〈σ̂y〉

We can now look at the product terms 〈âσ̂i〉, as described by equations 5(e), 5(f) and 5(g) from
the paper. For this derivation, we make the approximation 〈â†ââσ̂i〉 ≈ 〈â†â〉〈âσ̂i〉, as suggested by
Ref [6].
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d

dt
〈âσ̂z〉 = − i

~
〈[âσ̂z, H]〉+

κ

2

〈
â†â2σ̂z − ââ†âσ̂z

〉
+ γ1

〈
âσ̂+σ̂zσ̂− −

1

2
âσ̂zσ̂+σ̂− −

1

2
âσ̂+σ̂−σ̂z

〉
= −i∆cm〈[âσ̂z, â†â]〉 − iχ〈[âσ̂z, σ̂zâ†â]〉 − iεm〈[âσ̂z, â†]〉

− iΩd〈[âσ̂z, σ̂x]〉+
κ

2

〈
[â†, â]âσ̂z

〉
+ γ1 〈â+ âσ̂z〉

= −i∆cm〈âσ̂z〉 − iχ〈â〉+ Ωd〈âσ̂y〉 − iεm〈σ̂z〉 − γ1〈â〉 −
(
γ1 +

κ

2

)
〈âσ̂z〉

d

dt
〈âσ̂x〉 = − i

~
〈[âσ̂x, H]〉+

κ

2

〈
â†â2σ̂x − ââ†âσ̂x

〉
+ γ1

〈
âσ̂+σ̂xσ̂− −

1

2
âσ̂xσ̂+σ̂− −

1

2
âσ̂+σ̂−σ̂x

〉
+ γφ

〈
âσ̂zσ̂xσ̂z −

1

2
âσ̂xσ̂

2
z −

1

2
âσ̂2

z σ̂x

〉

= −i∆cm〈[âσ̂x, â†â]〉 − iχ〈[âσ̂x, σ̂zâ†â]〉 − i
(

∆as + χ

2

)
〈[âσ̂x, σ̂z]〉

− iεm〈[âσ̂x, â†]〉+
κ

2

〈
[â†, â]âσ̂x

〉
− γ1

2
〈âσ̂x〉 − γφ〈âσ̂x〉

= −i∆cm〈âσ̂x〉 − χ〈ââ†âσ̂y〉 − χ〈â†ââσ̂y〉 − (∆as + χ)〈âσ̂y〉

− iεm〈σ̂x〉 −
(κ

2
+
γ1

2
+ γφ

)
〈âσ̂x〉

≈ −i∆cm〈âσ̂x〉 − [∆as + 2χ(〈â†â〉+ 1)]〈âσ̂y〉 − iεm〈σ̂x〉 −
(κ

2
+
γ1

2
+ γφ

)
〈âσ̂x〉

d

dt
〈âσ̂y〉 = − i

~
〈[âσ̂y, H]〉+

κ

2

〈
â†â2σ̂y − ââ†âσ̂y

〉
+ γ1

〈
âσ̂+σ̂yσ̂− −

1

2
âσ̂yσ̂+σ̂− −

1

2
âσ̂+σ̂−σ̂y

〉
+ γφ

〈
âσ̂zσ̂yσ̂z −

1

2
âσ̂yσ̂

2
z −

1

2
âσ̂2

z σ̂y

〉

= −i∆cm〈[âσ̂y, â†â]〉 − iχ〈[âσ̂y, σ̂zâ†â]〉 − i
(

∆as + χ

2

)
〈[âσ̂y, σ̂z]〉

− iεm〈[âσ̂y, â†]〉 − iΩd〈[σ̂y, σ̂x]〉+
κ

2

〈
[â†, â]âσ̂y

〉
− γ1

2
〈âσ̂y〉 − γφ〈âσ̂y〉

= −i∆cm〈âσ̂y〉+ χ〈ââ†âσ̂x〉+ χ〈â†ââσ̂x〉 − (∆as + χ)〈âσ̂x〉

− iεm〈σ̂y〉 − Ωd〈âσ̂z〉 −
(κ

2
+
γ1

2
+ γφ

)
〈âσ̂x〉

≈ −i∆cm〈âσ̂x〉+ [∆as + 2χ(〈â†â〉+ 1)]〈âσ̂y〉 − iεm〈σ̂x〉 − Ωd〈âσ̂z〉

−
(κ

2
+
γ1

2
+ γφ

)
〈âσ̂x〉

Finally, let's derive the time-evolution of the expectation value of the photon-number operator
〈â†â〉.
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d

dt
〈â†â〉 = − i

~
〈[â†â, Ĥ]〉+ κ

〈
â†2â2 − (â†â)2

〉
= −iχ〈[â†â, σ̂zâ†â]〉 − iεm〈[â†â, â† + â]〉+ κ

〈
â†[â†, â]â

〉
= −iεm〈â− â†〉+ κ

〈
â†â
〉

= −2εmIm〈â〉+ κ
〈
â†â
〉

This gives the complete set of Cavity-Bloch Equations (equation 28), which exactly match Ref
[6].

Appendix E Derivation of the Qubit Spectrum for a Vacuum
Cavity

The simultaneous equations stated by Equation 37 can be rearranged as in Equation 47

Ωd〈σ̂y〉 = γ1(1 + 〈σ̂z〉) (47a)

(∆qd + χ) 〈σ̂y〉 = −γ2〈σ̂x〉 (47b)

(∆qd + χ) 〈σ̂x〉 = Ωd〈σ̂z〉+ γ2〈σ̂y〉 (47c)

Inserting, 47(a) into (b) and (c), we can eliminate 〈σ̂y〉.

〈σ̂x〉 =
−γ1

γ2Ωd
(∆qd + χ) (1 + 〈σ̂z〉) (48a)

(∆qd + χ) 〈σ̂x〉 = Ωd〈σ̂z〉+
γ1γ2

Ωd
(1 + 〈σ̂z〉) (48b)

We can now eliminate 〈σ̂x〉 by substituting 48(a) into (b).

−γ1

γ2Ωd
(∆qd + χ)

2
(1 + 〈σ̂z〉) = Ωd〈σ̂z〉+

γ1γ2

Ωd
(1 + 〈σ̂z〉)[

γ1

γ2Ωd
(∆qd + χ)

2
+ Ωd +

γ1γ2

Ωd

]
(1 + 〈σ̂z〉) = Ωd[

γ1

γ2
(∆qd + χ)

2
+ Ω2

d + γ1γ2

]
(1 + 〈σ̂z〉) = Ω2

d

Thus, the steady state qubit population, given below, matches Ref. [2].

Pe =
1 + 〈σ̂z〉

2
=

Ω2
d/2[

γ1
γ2

(∆qd + χ)
2

+ Ω2
d + γ1γ2

]
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