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I. INTRODUCTION

To effectively compare and analyze data from multiple
concordant sources, one can first learn a shared latent space.
For example, in fMRI brain imaging, each data point is a
video of a person’s functioning brain. By learning a shared
latent space, one can analyze and predict how subjects as a
whole respond to stimuli such as movies, audiobooks, and still
images [1].

We focus on multi-subject, multi-dataset fMRI analysis and
explore how to better cluster the subjects to develop fast,
scalable models to represent multiple subjects’ data in the
same learned latent space (Fig.1). Formally, the problem can
be described as

min
W,S

1/s
∑
i

‖Xi −WiS‖2F . (1)

where Xi represents the matrix of data collected from subject
i, Wi is the corresponding gram matrix for the subject. The
S matrix describes the evolution of the learned latent vectors
with time.

Previous models have employed an orthogonality constraint
in learning the latent space. This is not only unnatural, but
can also incur a computational penalty that limits scalability
[1], [2]. Furthermore, this constraint forces the latent features
to have uniform norm and be uncorrelated. The unit norm
prevents feature sensitivity to magnitude, while feature inde-
pendence prevents cross-feature interactions.

In response, we have presented new models that do not
a priori force an orthogonality constraint, but instead allow
the models to naturally learn the appropriate latent structure
in the data [3]. The new models use gradient descent paired
with specially designed regularizers. This lowers computation
complexity, improves scalability, allows for possible cross-
feature correlation, and enhances feature magnitude sensitivity.

One of models from [3] uses a centroid regularizer to push
all the user gram matrices WT

i Wi to be closer to each other.
Specifically, the algorithm implements gradient descent with
the following regularization:

(1/s)

s∑
i=1

‖WT
i Wi − C‖2F (2)

Fig. 1. Matrix factorization of fMRI data.

Our goal is to see if we can perform better by using multiple
centroids instead of one (as seen as above). We use tensor
factorization and clustering based on the subjects vector to
determine the centroids in our regularization. The underlying
assumption here is that certain people who share similar traits
(e.g., race, gender, socioeconomic background) may react
similarly to the same stimulus. If this is true, it makes sense
to create centroid regularizations for each group to enforce
similarity within the groups instead of among everyone.

II. TENSOR DECOMPOSITION

Since the data is collected as a tensor, any latent structure
in the data would be revealed best by decomposing the tensor
into a sum of parts. The CANDECOMP/PARAFAC (Canoni-
cal Decompositon/Parallel Factors) decomposition, commonly
known as the CP decompositon, factorizes the tensor as a sum
of component rank-1 tensors (Fig 2). In our case, we wish
to best approximate the third-order tensor X ∈ RI×J×K by
solving the following optimization problem:

min
X̂
||X̂ − X || (3)

where X̂ =

R∑
r=1

λr ar ◦ br ◦ cr

where R is a positive integer, and ar ∈ RI , br ∈ RJ , cr ∈ RK

∀r ∈ [R] are normalized. This can be written elementwise as,

xi,j,k ≈
R∑

r=1

ai,rbj,rck,r (4)

Previous work in neuroscience has applied CP decomposi-
tion to fMRI data from single subjects [5], arranged as voxels
by time by experiment iteration. Other authors [6]–[9] have
used CP decomposition to extract the latent elements from



Fig. 2. CP decomposition of an order-3 tensor. Sourced from [4]

time-varying EEG spectra, arranged as a three-dimensional ar-
ray with modes corresponding to time, frequency, and channel.
To our knowledge, no one has used tensor decomposition to
extract similarities between subjects using fMRI data.

Our algorithm uses the intuition that the CP decomposi-
tion constructs an R-dimensional latent feature space. The
vector ar is then though of list of each of the subjects’
“weights” on the rth feature. Similarly, br, and cr are the
weights for the time-stamps and voxels respectively. We can
arrange the rank-one component vectors as factor matrices i.e.
A =

[
a1 a2 . . . aR

]
and likewise for B and C. Then

following our intuition, the columns of AT represent each of
the subjects within the latent-space. This allows us to cluster
similar subjects, as described in Section III.

We follow the Alternative Least Squares (ALS) algorithm
for CP decomposition [4]. The algorithm first fixes B and C
and solves for A. It then fixes A and C and solves for B.
Finally, it fixes A and B and solves for C. These steps are
repeated until the convergence criterion is satisfied. Suppose
B and C are fixed, then the problem can be simplified as
a least-squares optimization of A(C�B)

T on the mode-1
matricization of tensor, X(1) [4], where M1 �M2 represents
the Khatri-Rao product.

min
Â
||X(1) − Â(C�B)

T||F (5)

where Â = A · diag(λ). This has the optimal solution [4]:

Â = X(1)(C�B)(CTC ∗BTB)† (6)

where M1 ∗ M2 denotes the Hadamard matrix product and
M†1 denotes the Moore-Penrose pseudo-inverse. Therefore,
each iteration of the algorithm simply involves computing the
pseudo-inverse of three R×R matrices, rather than a JK×R
matrix.

Ref. [4] observes that the ALS algorithm can take many
iterations to converge, without any guarantee of convergence.
Moreover, the accuracy of the algorithm is heavily dependant
on the initial starting guess for the factor matrices. Nonethe-
less, it’s success with other applications motivates us to explore
it further.

III. CLUSTERING ALGORITHMS

As alluded to in Section II, our next step involves clustering
the rows of the subject factor-matrix, A. We explore three
different clustering methods: K-Means, Birch, and Spectral
clustering. Each of these methods separate the subjects into
disjoint clusters based on their vectors in the latent space.

The K-means algorithm describes each cluster Cj , by the
mean µj of samples within the cluster. The algorithm aims to
minimize the within-cluster-sum-of-squares:

N∑
i=0

min
Cj∈C

||xi − µj ||2 (7)

where C = {Cj} is the set of clusters and N is the
number of samples. This metric makes the assumption that
clusters are convex and isotropic, therefore responding poorly
to elongated clusters, or manifolds with irregular shapes. Since
the metric is not normalized this algorithm suffers from the
“curse of dimensionality”, where Euclidean distances are over-
inflated in high-dimensional spaces. However, the algorithm is
guaranteed to converge and usually does so quite quickly [10].

Birch clustering iteratively builds a tree, known as the
Clustering Feature Tree (CFT) for the given samples. Every
new sample is inserted into the root of the CFT. It is then
merged with the “closest” subcluster of the root and merged
recursively until it reaches a leaf. After finding the nearest
subcluster in the leaf, the properties of this subcluster and
the parent subclusters are recursively updated. The closeness
metric is the Euclidean distance constrained by a branching
factor and a threshold distance. The Birch algorithm is com-
monly used to identify large data sets with many samples in
each cluster. However, as it uses the Euclidean distance, it too
doesn’t scale well to high-dimensional data [10].

Spectral clustering views the data as a graph. There are
several ways to construct this graph, we opt to connect the
k nearest neighbors of each data-point with an edge. The
spectrum of this graph’s Laplacian offers some interesting
insights about the graph density, number of clusters, and
the min-cut [11]. Particularly, the Fiedler vector (the second
eigenvector) assigns each of the nodes to a cluster. Spectral
clustering is ideal for non-flat data, clusters in concentric shell
shapes, and convex clusters. It struggles as the number of
clusters is increased [10].

Since we aren’t familiar with the arrangement of our subject
vectors in the latent space, we implement all three methods;
hoping to learn the structure of our data from their relative
successes.

IV. TENSOR-BASED CLUSTERING, SHARED RESPONSE
MODELING ALGORITHM

Our model for predicting the shared fMRI response of a
group of subjects uses gradient descent with the following
tensor-based clustering regularization:

k∑
j=1

(1/s)
∑
i∈Sj

‖WT
i Wi − Cj‖2F (8)

where k denotes the number of clusters and Sj denotes
the indices of the subjects that belong to cluster j. The
reason for regularizing the gram matrix WT

i Wi instead of the
subject matrix Wi directly is that the gram matrix can reveal
rotationally invariant structure. fMRI measurement inevitably
has some small measurement variations and errors that may be



due to rotations. Using the gram matrices to compare subject
matrices eliminates confounding factors that may arise from
rotation. Formally, if we have a Wj ≈ QWi where Q is an
orthogonal matrix, ‖WT

j Wj −WT
i Wi‖2F ≈ 0. Whereas, if we

use ‖Wj −Wi‖2F 6≈ 0.

V. EXPERIMENT AND RESULTS

We tested our cluster-centroid model, the original centroid
model [3], and the deterministic model [1] on a dataset
which includes the 10 subjects’ fMRI responses to the movie
Raides of the Lost Ark. We used rank k = 50. SRM is the
deterministic model with othogonality constraint. GD-NB is
gradient descent without any regularization. GD-Ctr1 is the
model from [3] that creates a centroid based on all the subjects.
GD-Ctr2 and GD-Ctr3 use gradient descent with two and three
centroids respectively based on our tensor factorization and
clustering results.

The resulting gram matrices (Fig. 3) reveal some of the
differences in the learned latent brain models. From SRM, the
subject gram matrices are orthogonal as explicitly required.
From GD-NB, or vanilla gradient descent, there is no regu-
larization, hence all the subject gram matrices are noticeably
different from each other. From GD-Ctr1 [3], the centroid
regularization is applied to all the subjects. For GD-Ctr3, there
are three clusters corresponding to three centroids. One cluster
contains only the 3rd subject and another cluster contains only
the 4th subject. The rest of the subjects are in the last cluster.
As a result, the third subject’s gram matrix WT

2 W2 looks
slighlty different from the others.

We used time-segment matching to evaluate the represen-
tative power of the latent brain models. The accuracy results
is shown in Fig. 4. First, we train the models on the first
timeseries half of the data, then test on the second timerseries
half of the data. The training part yields user matrices Wi,
which we then use to derive Si for the test data. During testing,
we hold out a subject’s stimulus matrix Si, then create an
aggregate matrix of the remaining Sj . We match each time
segment with the time segment it has the highest correlation
with from the aggregate matrix. If the matched segment is the
same segment as the one from the held out set, then the match
is successful and accurate. This process is repeated for each
subject.

Unfortunately, we don’t see an obvious differences in the
centroid models of different cluster numbers. However, we
suspect a main reason is that there are only 10 subject, so
clustering in this case may not be very informative. This is
more evident when we examine the clustering results:

n_clusters: 2
K_Means: [1 1 1 0 1 1 1 1 1 1]
Birch: [0 0 0 1 0 0 0 0 0 0]
Spectral: [0 0 0 0 0 0 0 0 0 1]

Fig. 3. Gram matrices for the first five subjects of each model.

n_clusters: 3
K_Means: [1 1 2 0 1 1 1 1 1 1]
Birch: [0 0 2 1 0 0 0 0 0 0]
Spectral: [0 0 2 1 0 0 0 0 0 0]

Notice that every time we increase the number of clusters,
the new cluster only has one member. We examine the results
resulting from number of clusters from 2 to 10, and realize
that this phenomenon of one-member clusters hold, as shown
in Table 1 below. Since this is consistent across all three
algorithms, we suspect that the vectors are sufficiently close
together, forming one cluster all-together. As a result, it is not
clear whether this tensor-based clustering for shared response
modeling is beneficial or not.

VI. CONCLUSION

We present tensor-based clustering for shared response
modeling. However, since the number of subjects is too small,
the clustering effect is not pronounced. As a result, we can not
confidently claim the reliability and the generalizability of the
results. One future step is to test on fMRI datasets with more
subjects so that we can potentially find clusters with more
members in them. It may also help to use large fMRI datasets



Fig. 4. Results for the time-segment matching experiment.Top: Test and train
accuracy averaged over all subjects. Below: Accuracy for each subject.

where we know biological information (e.g., race, gender) so
we can test our assumption more accurately.
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APPENDIX A: CLUSTERING RESULTS

Number Clustering Results
of Clusters

K-Means : 1 1 1 0 1 1 1 1 1 1

2 Birch : 0 0 0 1 0 0 0 0 0 0

Spectral : 0 0 0 0 0 0 0 0 0 1

K-Means : 1 1 2 0 1 1 1 1 1 1

3 Birch : 0 0 2 1 0 0 0 0 0 0

Spectral : 0 0 2 1 0 0 0 0 0 0

K-Means : 0 0 2 1 0 0 0 3 0 0

4 Birch : 0 0 2 3 0 0 0 0 0 1

Spectral : 0 0 0 1 0 0 0 0 0 2

K-Means : 1 1 2 0 1 1 1 4 1 3

5 Birch : 0 0 2 3 0 0 0 4 0 1

Spectral : 3 0 4 1 0 0 0 2 0 3

K-Means : 1 1 2 0 1 5 1 4 1 3

6 Birch : 0 0 5 3 0 2 0 4 0 1

Spectral : 1 4 2 3 4 0 4 3 4 1

K-Means : 1 1 2 4 1 5 6 3 1 0

7 Birch : 0 0 5 3 0 6 2 4 0 1

Spectral : 3 5 2 4 1 0 5 6 5 3

K-Means : 1 1 4 2 0 5 6 3 1 7

8 Birch : 7 4 5 3 7 6 2 1 7 0

Spectral : 2 5 1 6 3 0 4 6 4 2

K-Means : 1 6 2 0 7 5 8 3 1 4

9 Birch : 0 1 2 3 0 4 5 6 0 7

Spectral : 2 5 1 7 4 0 6 7 2 3

K-Means : 9 6 2 0 7 5 8 3 1 4

10 Birch : 0 1 2 3 0 4 5 6 0 7

Spectral : 7 5 1 9 4 0 6 9 2 3
TABLE I

CLUSTERING RESULTS FROM ALL THREE ALGORITHMS. THE CLUSTERS
ARE LABELLED ARBITRARILY.


