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1 Introduction

Quantum dots are micro or nano-scale devices which serve a traps for electrons. Since quantum

dots are able to confine electrons in all three spatial directions, their electronic properties show

many parallels with those of atoms. As such, they’re regarded as artificial atoms and their discrete

energy eigenvalues are regarded as “shells”. However, unlike naturally-occuring atoms the electronic

potential created by quantum dots can easily be tuned by one or more voltage terminals. This allows

an experimentalist to vary the number of electrons confined to a dot and conveniently scan through

the periodic table. Secondly, the larger spatial dimensions of the quantum dot allow for experiments

that cannot be carried out in atomic physics [1]. It is through this versatility that few-electron

quantum dots prove their utility for quantum simulation.

The quantum dot’s confinement potential can be approximated as a two-dimensional isotropic har-

monic oscillator, with an ρ2 cylindrical dependence [1] (where ρ is the axial distance from the center).

This assumption can be verified using a finite-element package to solve the Laplace equation as will

be explored in Chapter 2. A very elegant method by Schwinger shows that the radial equation of

the hydrogen atom is equivalent to that of a two-dimensional harmonic oscillator [2]. Schwinger’s

method essentially provides a surjective homomorphism from the geometric symmetry of the hydro-

gen atom, SO(3) to the symmetry group of the two-dimensional harmonic oscillator, SU(2). The

existence of this map follows from the fact that the group of unit quaternions (isomorphic to SU(2))

can be used to represent rotations in 3-dimensional space up to a sign [3]. This equivalence reaffirms

the motivation to use quantum dots as an analog simulation for atoms.

Quantum dots are traditionally made with semiconductor heterostructures, such as InGaAs/AlGaAs

[1]. These structures include a single-electron transistor (SET), which is a minituarized resonant

tunneling diode that can be driven by a small fraction of a single-electron charge [1]. These SETs

allow the experimentalist to detect the electrons which tunnel out of the attached quantum dot.

However, semiconductor quantum dots have a range of disadvantages. Firstly, the small effective

mass in GaAs (m∗ = 0.067me) results incredibly small energy values, compared to naturally occuring

atomic orbitals [1]. For example ground state is 26 meV and 93 meV which are about three orders of

magnitude smaller than naturally-occuring atomic orbitals [1]. Secondly, solid-state phonons notably

change the spin-orbit coupling of the electrons, changing the transition energies of within the dot.

Similarly, unwanted trapped charges and two-level system defects in the semiconductors change the
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CHAPTER 1. INTRODUCTION

transition energies by warping the electrical potential around the dots. These stochastic changes in

the transition energies broaden the peaks corresponding to electrons tunneling out of the dot.

On the other hand, the electrons on Helium are nearly-free. This implies that their effective mass

is very close to that of a free-electron and the energy levels are a much closer match to true atomic

orbitals. While “ripplons” on the liquid-Helium surface are analogous to phonons in that they

physically move electrons, the much higher effective mass of the electrons on Helium implies a

negligible spin-orbit coupling. Moreover, we need not worry about trapped charges on the Helium

surface. As such, we expect to see much thinner peaks in current.

However, unlike semiconductor devices, it is extremely difficult to detect single electrons on Helium

[4, 5]. We propose an solution to this problem by constructing large arrays (on the order of 106)

of identical quantum dots, with the continuous metal layers and the same gate voltages. This

array should allow us to perform ensemble measurements on all the dots simultaneously. Thus as

we increase the voltage on the bottom metal, we expect the top-most electrons from each dot to

tunnel out in unison. This would be followed by all second electrons tunneling out together, and so

forth. These electrons collectively form a large current which can easily be detected. Moreover, the

linewidth of the current peaks should indicate the uniformity across dots in the array. In other words,

fabrication defects should widen the distribution of voltages which permit the top-most electron (and

other correspondingly), hence broadening the linewidth of the transition.

This thesis is outlined as follows. Chapter 2 discusses structure and physics of the individual quantum

dots. The chapter draws upon a model used by Ref. [1] to understand few-electron quantum dots

within semiconductors and suggests an experiment to verify the model’s validity. Chapter 3 proposes

a design for main device and a fabrication recipe to reliably and rhobustly construct these large

arrays of identical dots. While we were able to thoroughly test these fabrication techniques, time-

constraints prevented us from constructing and measuring a completed device. Finally this thesis

will conclude with closing remarks and an appendix dedicated to deriving results used in Chapter 2.
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2 Quantum Dots for
Electrons-on-Helium

We construct our quantum dot as a two layer device seperated by an insulator, as shown in Figure

2.2. A large positive voltage is applied on the bottom plate, whereas the top plate is grounded. This

attracts the electrons towards the hole through which they "feel" the bottom plate’s potential. The

electrons can’t dissapear into the metal as they’re confined along the z-axis by the liquid Helium

surface, thus successfully trapping them within the dot.

100nm of TaWSi

(Positive Voltage)

500μmAl
2
O

3 
Single Crystal

Substrate (Sapphire)

~10nm of Al
2
O

3
 insulator

25nm of TaWSi

   (Grounded)

~30nm wide

He

Figure 2.1: Cross-section of the proposed design of a quantum dot. A large positive voltage is
applied on the bottom plate whereas the top plate is grounded. The electrons (red) are attracted

towards the positive potential, but are confined to the Helium surface.

Figure 2.2 shows results from a numerical simulation of this design. We construct a device as

above, and define the dielectric constants as 1.057 for Helium, 9 for Al2O3, and near infinity for the

conducting TaWSi. As seen in Figure 2.2(b), the potential on the liquid Helium surface is parabolic

to good approximation. For low energies, the electrons experience a potential very similar to a 2D

harmonic oscillator.

Much like naturally occuring atoms, the electronic structure of quantum dots is stable when its shells

are completely filled. The degeneracies of orbitals within each shell along with the spin degeneracy of

electrons give rise to “magic numbers” for electron occupancy, for which the systems are particularly

stable. In atoms these stable structures correspond to the Noble Gasses, with electron occupancies

of 2, 10, 18, 36, etc... [1].

As derived in Appendix A, the energy spectrum of the two-dimensional isotropic oscillator is given

by Equation 2.1, where n quantizes the number of nodes in the wavefunction and l is the angular
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CHAPTER 2. QUANTUM DOTS FOR ELECTRONS-ON-HELIUM

Figure 2.2: Finite-element solutions to the Laplace equation for a quantum dot under liquid
Helium. Panel (a) shows the potential everywhere in space when 1V is applied on the bottom

TaWSi layer and the top TaWSi layer is grounded. Panel (b) shows the potential on the surface of
the Helium as a function of the axial distance, ρ. We plot the negative potential since our particle
is an electron. The dip in the liquid helium surface, caused by the electron, is ignored and it is
approximated as uniformly flat. These simulations were performed by Prof. Stephen Lyon.

momentum quantum number.

En,l = ~ω(2n+ |l|+ 1) (2.1)

The lowest energy state (n, l) = (0, 0) can hold up to two electrons (including the spin degeneracy).

The next shell has a double orbital degeneracy formed by (0,±1), and can contain up to 4 electrons.

The third shell has a triple orbital degeneracy with (0,±2), (1, 0) so that it can hold up to six

electrons. The lower degree of symmetry within quantum dots give rise to a lower sequence of magic

numbers: {2, 6, 12, 20, . . . }.

The corresponding wavefunctions (cylindrical harmonics) are given by Equation 2.2, where L(l)
n are

the generalized Laguerre polynomials.

ψn,l(ρ, φ) = eilφ

ρ0

√
n!

2π(n+ |l|)!

(
ρ

ρ0
√

2

)|l|
e−ρ

2/4ρ2
0 L(l)

n

(
ρ2

2ρ2
0

)
(2.2)

ρ0 =
√
~/mω n ∈ {0, 1, 2, . . . } l ∈ {0,±1,±2, . . . }

The relatively deep well, as seen in Figure 2.2(b), seperate the dot from its surroundings, such

that only highly excited electrons can thermalize out of the dot. As such, the number of electrons,

N within the dot is a well defined integer. Due to this threshold, current can only flow when N

electrons in the dot have sufficient energy to occupy the N+1 lowest possible energy states. In other

words, current flows only when the top-most electron has an energy above the dot’s Fermi energy,

εF . As we increase the voltage of the bottom-most metal plate, the ladder of energy eigenvalues is
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CHAPTER 2. QUANTUM DOTS FOR ELECTRONS-ON-HELIUM

shifted up. We observe a sharp peak in current whenever the current top-most electron crosses the

Fermi energy. This series of sharp peaks in the measured current with respect to an increase in gate

voltage is seen in Figure 2.3.

Figure 2.3: Current flowing through a two-dimensional circular quantum dot on varying the gate
voltage. The first peak marks the voltage where the first electron enters the dot, and the number
of electrons, N, increases by one at each subsequent peak. The distance between adjacent peaks

corresponds to the addition energies. Adapted from [1].

The peaks in Figure 2.3 correspond to the transition from N to N + 1 electrons confined within the

dot. As such, the flat portions between peaks refer to a fixed N . The distance between consecutive

peaks is proportional to the addition energy Eadd, which is the energy required to add the (N +

1)th electron into the dot [1]. The constant-interaction model crudely assumes that the Coulomb

repulsion between electrons is independent of N . Under this assumption, the Coulomb interactions

are represented as the charging energy, e2/C, of a single electron on a capacitor, C. As such,

the addition energy is given by Eadd = e2/C + ∆E, where ∆E is the energy difference between

consecutive states [1].

Let’s briefly pause to motivate the CI model and justify it’s validity. In Appendix A, we include

the Coulomb interaction term and diagonalize the Hamiltonian for two electrons in a harmonic

oscillator. However, the derivation results in the grim fact that exact solutions to this problem are

only available for particular countable infinite set of oscillator frequencies. A perturbation theory

approach is able to approximate the eigenenergies to good approximation [6]. Ref. [7] is able to

approximately solve the three-electron problem with perturbation theory, however we were unable

to find a reference which attempts to solving the many-electron problem for N = 3. Therefore, an

scalable approximate model is absolutely neccessary. The CI model follows the atomic model for shell

filling in assuming that the Coulomb repulsion between electrons is small compared to the harmonic
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CHAPTER 2. QUANTUM DOTS FOR ELECTRONS-ON-HELIUM

well. Appendix A shows that in this regime, the energy values of the two-electron system are very

close to those of the single-electron problem. In our case, it is valid to assume that the electrons are

far apart, as the size of the dot much larger than the spread of the electron’s wavefunctions.

Ref. [1] claims that despite it’s simplicity, the CI model is remarkably successful in explaining the

experimental data to first order. From 2.3, observe that significantly more energy is required to add

an electron to a dot with 2, 6, and 12 electrons, which correspond to the first few magic numbers

for an two-dimensional isotropic harmonic oscillator. This is because the extra ∆E is only charged

when an electron is added to a new shell. The first shell, (n, l) = (0, 0) is doubly spin-degenerate.

Therefore, adding the first electron costs e2/C+∆E but adding the second electron only costs e2/C.

The second shell is has double orbital and spin degeneracies and can hold up to four electrons. Hence,

the only adding the third and seventh electrons costs the extra energy ∆E. This explains why the

longest gaps between peaks correspond to fully filled electronic shells.

Hund’s rule states that atomic shells are first filled with electrons of parallel spins until the shell

is half full; then it is filled with anti-parallel spins. As such, adding an electron to a half-filled

shell requires some small excess of energy. For quantum dots, the half-filling of shells happens at

N = 2, 4, 9, and 16. These maximally filled spin states are represented by a relatively higher peak

or addition energy [1].
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3 Design and Fabrication

3.1 Device Design

Unlike semiconductor devices, it is extremely difficult to detect single electrons on Helium [4, 5]. To

tackle this issue we construct an array of 5.5× 106 identical quantum dots on a centimeter-squared

chip. If we perform ensemble measurements on all these dots simultaneously, we should expect to

measure classical currents as the electrons would leave all of the dots simultaneously. If the dots in

the array are not completely identical, which is likely to arise from fabrication defects, the linewidths

of these current peaks may widen.

We measure these dots through channels connected to a very high voltage. As mentioned earlier,

we remove electrons from the dots by making the bottom metal layer more negative. This pushes

raises the floor of the potential, allowing the most energetic electrons to thermalize out of the dot.

As we do this, we must simultaneously switch on the high positive voltage on the measurement

channels, such that the electrons are pulled towards these channels. In order to minimize distorting

the potential within the quantum dots, we leave 4µm of space between the dots and channels.

To ensure that all dots are collected reliably by the measurement channels, we design the device such

that the channels are interspersed with the blocks of dots. Particularly, each block is an array of ten

dots across and 2500 dots down. We run a measurement channel between every pair of consecutive

blocks. Figure 3.1 shows a unit cell with two channels running around a single block of dots. This

unit cell is tiled 220 times across the length of the chip, to form a large array of 2200 × 2500 dots,

in total.

As elaborated in Section , it is vital that during lithography, the start and end of each stripe-width

falls away from any dots. With the current design and a 20nm stripe-width, it is possible to write

four unit cells before the stripe-width intersects with a block of dots. As such, we design a CAD file

with only four unit cells. Then, if we tile this set-of-four within the Heidelberg’s software, the tool

resets the starting position of each stripe, circumventing this issue.

8



CHAPTER 3. DESIGN AND FABRICATION

Figure 3.1: Design for the design made in AutoCAD. The boxes in yellow define the gaps around
the measurement channels. The blue circles are the dots. The arrays are divided up into unit cells
of 10 × 2500 dots, such that they can be interspersed with measurement channels. Since each unit
cell is 250 times taller than it is wide, the center portion of the design has been trucated, as shown

by the zig-zag lines. All measurements are in µm.
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3.2 Fabrication Steps

Table 3.1 explains the recipe to define bond-pads around the device. These bond-pads should allow us apply voltages to each layer individually. It

is easiest to fabricate several such chips simultaneously on a large sapphire wafer. This is not only the fastest way to make several samples, but also

ensures consistency across several chips. After these chips are diced, we follow Table 3.2 to define the actual device (i.e. the array of dots and streets).

Table 3.1: Fabrication Steps to Define the Bond-Pads and Dice the Devices

Steps Cross-sectional View Top View

1. Prepare Wafer
(a) Starting Wafer: Al2O3 single crystal (sapphire) substrate.

C-axis [0001]. One side CMP polished.
(b) Solvent Clean: Sonicate in acetone and then in isopropanol

(IPA) for 1 minutes each. Thoroughly dry off the sample.
(c) Acid Clean: Soak in 3 H2SO4:1 H2O2 solution (Piranha

solution) for 10 minutes. Wash thoroughly with water and
then dry off the sample.

500μmAl
2
O

3
 Single Crystal

Substrate (Sapphire)

Al
2
O

3
 Single 

Crystal 

Substrate

(Sapphire)

1.2cm

1cm

2. Define the Bond-Pads for the Bottom Layer of TaWSi

(a) Deposit TaWSi using the AJA Sputterer. (1500s, 125W DC
plasma, 3mTorr)

(b) Define the bondpads with photolithography. (AZ1505 pho-
toresist; 10mm writehead. )

(c) Develop: Swirl in AZ300MIF developer for 1 minute.
(d) Reactive-Ion Etching (RIE) to etch around the bondpads.

(SF6+O2 recipe for 1 minute)

100nm

500μm

AZ1505 500nm

TaWSi

Al
2
O

3
 Single Crystal

Substrate (Sapphire)

AZ1505

TaWSi

TaWSi

1cm

0.2cm

0.2cm 0.8cm

0.2cm
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3. Grow the Insulating Layer

(a) Strip Resist: Sonicate in PRS1000, acetone and then in IPA
for 1 minute each. Thoroughly dry off the sample.

(b) Atomic-Layer Deposition (ALD) of Al2O3 (100 cycles at a
rate of 1.2 Å per cycle).

100nm

500μm

12nmAl
2
O

3

TaWSi

Al
2
O

3
 Single Crystal

Substrate (Sapphire)

0.2cm 0.8cm

Al
2
O

3
 only

Al
2
O

3

on TaWSi
1cm

0.2cm

0.2cmAl
2
O

3
 only

4. Deposit Top Layer of TaWSi and Aluminum Hard
Mask

(a) Deposit TaWSi using the AJA Sputterer. (300s, 125W DC
plasma, 3mTorr)

(b) Evaporate Aluminum using the Angstrom Nexdep. (40s at
a rate of 5Å/s. 5E-6 mTorr)

Al Mask 20nm

100nm

500μm

12nm

TaWSi 20nm

Al
2
O

3

TaWSi

Al
2
O

3
 Single Crystal

Substrate (Sapphire)

Al Hard Mask

1cm

1cm

0.2cm

0.2cm

5. Define the Bond-Pads for the Top Layer

(a) Define the bondpads with photolithography. (AZ1505 pho-
toresist; 10mm writehead, 25% filter, 5% focus-offset, 35%
intensity)

(b) Develop: Swirl in AZ300MIF developer for 3 minutes.
Note: We develop for longer such that the developer etches
through the aluminum.

(c) RIE around the bondpads. (SF6+O2 recipe for 30s.)

Note: A 30s etch may be longer than necessary, but we need not
worry about over-etching as the Al2O3 acts as an etch-stop.

AZ1505 500nm

100nm

500μm

12nm

20nm

Al
2
O

3 
Single Crystal

Substrate (Sapphire)

Al Mask 20nm

TaWSi

Al
2
O

3

TaWSi
AZ1505

0.2cm 0.8cm

1cm

0.2cm

0.2cm

0.8cm
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6. Clean Up the Wafer and Dice the Chips

(a) Dip in 10:1 diluted Buffered Oxide Etch (BOE) for a minute
to etch any exposed oxide. Wash thoroughly with water
and then dry off the sample. Note: BOE rapidly etches
through the aluminum, so it is vital to keep the protective
photoresist layer during the dip.

(b) Strip Resist: Sonicate in PRS1000, acetone and then in IPA
for 1 minute each. Thoroughly dry off the sample.

(c) (Optional) Dice the rectangular (1cm × 1.4cm) chips from
the larger sapphire wafer.

TaWSi

100nm

500μm

12nm

TaWSi

20nm

Al
2
O

3

Al
2
O

3
 Single Crystal

Substrate (Sapphire)

Al Mask 20nm

Al Mask on

TaWSi/Al
2
O

3
/TaWSi

2nd layer only

1cm

0.2cm

0.2cm

0.2cm 0.8cm0.2cm0.2cm

1st layer only

Table 3.2: Fabrication Steps for the Large Quantum-Dot Array and Measurement Channels

Steps Cross-sectional View Top View
1. Define the Channels into the Top TaWSi layer
(a) Starting Chip: Al Mask (20nm) + TaWSi layer (20nm) +

Al2O3 insulation (12nm) + TaWSi layer (100nm), all on a
sapphire substrate. As shown by Step 6 in Table 3.1.

(b) Define the channels with photolithography. (AZ1505 pho-
toresist; 2mm writehead, 1% filter, 10% focus-offset, 35%
intensity.)

(c) Develop: Swirl in AZ300MIF developer for 3 minutes.
(d) Inspect under an optical microscope.
(e) RIE through the top layer of TaWSi (SF6+O2 recipe for

30s)
Note: We etch around, not through, the measurement channels
to disconnect them from the dots.

AZ1505 500nm

100nm

500μm

12nmAl
2
O

3

TaWSi

TaWSi 20nm

Al
2
O

3 
Single Crystal

Substrate (Sapphire)

Al Mask 20nm

AZ1505

6mm

24μm
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2. Define the Channels into the Al2O3 Layer

(a) Dip in 10:1 diluted BOE for a minute to etch through the
oxide layer. Wash thoroughly with water and then dry off
the sample. Note: The HF delaminates the photoresist, so
it must be removed right after.

(b) Strip Resist: Sonicate in PRS1000, acetone and then in IPA
for 1 minute each. Thoroughly dry off the sample.

100nm

500μm

12nmAl
2
O

3

TaWSi

TaWSi 20nm

Al
2
O

3 
Single Crystal

Substrate (Sapphire)

Al Mask 20nm

TaWSi

0.2cm 0.8cm0.2cm0.2cm

6mm

Al Mask

24μm

3. Etch the Channels into the Bottom TaWSi Layer

(a) For good measure, perform an oxygen descum in the APEX
Metal Etcher to remove any residual oxide.

(b) RIE through the bottom layer of TaWSi. (SF6+O2 recipe
for 1 minute).

Note: The aluminum layer is used as a hard-mask (in place of
the photoresist) as it is an etch-stop for the SF6 ions.

100nm

500μm

12nmAl
2
O

3

TaWSi

TaWSi 20nm

Al
2
O

3 
Single Crystal

Substrate (Sapphire)

Al Mask 20nm

TaWSi

0.2cm 0.8cm0.2cm0.2cm
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Al Mask
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4. Define the Array of Dots into the Top TaWSi layer

(a) Define the dots with photolithography. (AZ1505 photore-
sist; 2mm writehead, 1% + 50% filters, 7.5% focus-offset,
and 20% intensity.)

(b) Develop: Swirl in AZ300MIF developer for 3 minutes.
(c) Inspect under optical microscope. Note: The dots are too

small to discern optically. At best, one may be able to
verify that the dot’s aren’t noticeably wider than expected.
It may help to look through the dark-field (or ring) lighting.

(d) RIE through the top layer of TaWSi (SF6+O2 recipe for
30s)

Tip: I would recommend making two identical devices in parallel.
One of which is reserved for measurement, while the other can be
inspected under a Scanning Electron Microscope (SEM).

TaWSi 100nm

500μm

12nmAl
2
O

3

TaWSi 20nm

Al
2
O

3 
Single Crystal

Substrate (Sapphire)

Al Mask 20nm

TaWSi

AZ1505 500nm

6mm

AZ1505

5. Clean Up the Device

(a) Strip Resist: Sonicate in PRS1000, acetone and then in IPA
for 1 minute each. Thoroughly dry off the sample.

(b) Strip the Aluminum Hard Mask: Soak in AZ300MIF devel-
oper for 3 minutes. Wash thoroughly with water and then
dry off the sample.

(c) Dip in 10:1 diluted BOE for a minute to etch any exposed
oxide. Wash thoroughly with water and then dry off the
sample.

TaWSi 100nm

500μm

12nmAl
2
O

3

TaWSi 20nm

Al
2
O

3 
Single Crystal

Substrate (Sapphire)

dots

channels 0.2cm 0.8cm0.2cm0.2cm

6mm

24μm
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3.3 Optimizing Fabrication Steps

3.3.1 Etch Tests on the Plasma-Therm APEX RIE Etcher

Etching the larger measurement channels is a reliable way to verify and improve upon our etch

recipe. We came across three issues while optimizing the etch recipe:

Reaction of Chlorine with Photoresist: Initially, we thought to etch the aluminum hard mask

with a BCl3/Cl2 chemistry RIE. While the streets were sharply defined, an unwanted debris had

deposited around the streets. As seen in Figure 3.2, the debris remained in place after a solvent

clean (to strip-off the photoresist), a dip in AZ300MIF developer (to strip-off the aluminum mask),

and an oxygen descum. Since there wasn’t any debris after developing, we knew that it’s source had

to be the chlorine etch. Since chlorine-based plasma are frequently used in silicon microfabrication,

we suspect that the APEX’s chamber may be contaminated.

In any case, we replaced this etch step with a longer developing step in AZ300MIF. 3 minutes should

be sufficient to develop the resist, as well as etch through the aluminum. The sample must be stirred

well while in the developer to ensure that smaller features are cleared through thoroughly.

Figure 3.2: Optical microscope images of debris accruing on the sample surface as a result of the
chlorine-based RIE. The panels show the sample after it has been (a) developed, (b) etched under
the chlorine-based RIE, (c) solvent cleaned to remove the photoresist, (d)dipped in AZ300MIF

developer for 3 minutes to remove the aluminum mask (e) exposed to an oxygen plasma to remove
any residual oxide. The debris is faint in panels (d) and (e), but it hasn’t completely dissapeared.

Unsuccessful Attempt at an Aggressive Etch: Al2O3 is known to be an etch-stop for the

SF6/O2 etch we are using for the TaWSi. Hoping to etch through the Al2O3 during the same
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process, we pumped Ar into the chamber along with SF6 and O2. We expected the argon to

abrasively sputter through the oxide. However, after running the etch for varied lengths of time, we

did not see an increase in the step-height of our features. This recipe needs to be studied further.

Note: The step heights were consistent across measurements on the Profilometer and the Confocal

Microscope. To ensure consistency across samples, the photoresist was removed before measuring

the features’ profile.

After a lack of success with the aggressive etch recipe, we resorted to etching the Al2O3 with a dip

in 10:1 diluted Buffered Oxide Etchant (BOE) for 1 minute. Since BOE etches aluminum as well,

we shouldn’t strip-off the resist before this step. However, BOE significantly delaminates the resist,

so we must follow this step with a solvent clean.

Imprints from Previous Failed Photolithography: One of our samples underwent a faulty

Heidelberg write, as the tool lost it’s focus during the write. Nevertheless, we stripped off the

photoresist and optically verified that the aluminum hard-mask hadn’t been etched. After recoating

the sample with photoresist, repeating the photolithography step, and etching, we noticed that some

metal had been chipped off around the measurement channels. Figure 3.3 shows optical microscope

images of the sample after the photoresist and aluminum hard-mask has been stripped off. A height

measurement under the confocal microscope revealed that the white regions in Figure 3.3 were about

20nm. If this measurement is accurate, we expect the top layer of TaWSi to be etched through,

disconnecting the measurement channels from their bondpads. Upon further inspection, we realized

that the white regions had a pattern exactly resembling the first failed write. Therefore, we suggest

to strip the hard-mask and recoat the sample with aluminum whenever a photolithography step

fails.

Figure 3.3: Optical microscope images of the sample with metal chipped off. These were taken
after the aluminum mask had been stripped off. Therefore, the white regions were likely etched

through the TaWSi.

3.3.2 Dose Tests on the Heidelberg DWL 66+ Lithography System

It was clear that we were hitting the limits of photolithography by defining sub-micron dots. How-

ever, the speed and scalability of photolithography, as well as the simplicity of our features, motivated
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us to optimize this process to our needs.

We fine tuned the intensity and focus-offset parameters on the Heidelberg DWL 66+ lithography

system, to minimize the size of the individual dots and maximize the consistency across the array.

In order to speed up this iterative optimization, we conducted our dose tests on samples where

100nm of TaWSi was deposited on a silicon wafer. These samples could be cleaved quickly and we

saved valuable time by skipping most steps enumerated in Section 3.2. Moreover, these results are

can identically be implemented when constructing the actual devices, as the aluminum hard-mask

prevents the dots from widening when we etch deeper into our stack.

Appendix B details this optimization process and comments on each of our samples. In summary,

we encountered three key issues:

Size Gradient Across Stripe Width: The 2mm writehead on the Heidelberg has a default stripe

width of 60µm. However, as seen in Figure 3.4, this setting causes the size of the dots to vary along

a row. To fix this issue we shrink the writehead’s stripe width to 20µm.

Stitching Errors: In Figure 3.4, we can see a pair of columns with abnormally wide dots. These

are very likely caused by an error when stitching consecutive stripes. Even though such errors are

fairly uncommon, we design our final device such that the stripes have borders far away from any

dots.

Over-developing: As we shrink the writehead’s strip width, the laser scans over a shorter distance

and over-exposes our features. Figure 3.5 shows an image of a sample where only the stripe-width

has been shrunk. The significantly more intense laser causes the features to widen until they coelesce

into one another. We address this issue in two ways. First, we introduce multiple filters infront of

our laser to significantly reduce its intensity. Secondly, we evaporate a thin-film (20nm) of aluminum

on our top-most layer of TaWSi, to act as a hard-mask during development.

After fixing these issues, we were able to safely vary the focus-offset and intensity of the laser to

minimize the size of our dots. Figure 3.6 shows SEM images of the dots as we vary the laser’s

intensity. Thus far, we have found the intensity of 20% with additional 1% and 50% filters to be

optimal. Sweeping the focus-offset does not have a visible effect on the size of the dots, so we set it

to the reccomended 7.5%. These settings produce dots with a 650nm diameter. We believe that

with additional filters, we can make these dots even smaller.
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Figure 3.4: Optical (a) and SEM (b,c) images from sample HDT020. Panels (a) and (b) show a
gradient in the size of the dots across a row, as well as a stitching error between consecutive stripes.
Panel (c) is a magnified image of the dot. Even though the dots are of an acceptable diameter (i.e.
≈ 400nm), the large variance in size forces us to modify the recipe. The particulates within the
dot are simply a result of unintentionally etching into the silicon substrate. This issue shall not
proceed when switching to sapphire substrates, as these wafers are an etch stop for the SF6 RIE.

Figure 3.5: Optical image from sample HDT021. This sample was processed almost identically to
the one shown in Figure 3.4, with mainly the stripe width changed from 60µm to 20µm. We can
see that the features have clearly been over-developed. The array of dots has coelesced into one

large square. Upon careful inspection, a few dots are vaguely visible around the edges of the square.
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Figure 3.6: SEM images of the quantum-dot arrays from sample HDT022. The laser’s intensity is
sweeped from (a) 20%, to (b) 30%, to (c) 45%, and to (d)70%. Observe that increasing the

intensity proportionally increases the size of these dots. The smallest dots in panel (a) are about
650nm wide, whereas in panel (d) the dots have merged to form anti-dots.
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4 Conclusion

We have thus developed a recipe which to reliably and rhobustly fabricate large arrays of quan-

tum dots and their corresponding measurement channels. Through rigorous iteration, we were

able to push the limits of photolithography to consistently produce dots which are 500nm wide.

We have also constructed a etch technique which results in sharp and well-defined features. How-

ever, time-constraints prevented us from putting these recipes together to form a completed device.

Nonetheless, the path forward has already been laid out.

Even after the first set of completed devices is fabricated and measured, in many ways, the project

would have only begun. Being able to construct and measure quantum wells for nearly-free electrons

(i.e. electrons on liquid Helium) could open a new door into quantum computing and quantum

simulation. We may be able to improve on our design by constructing a three-layer device, where

electrons escape through tunneling rather than thermalization. Moreover, these devices would allow

us better control to shape the dot’s potential well to better approximate a harmonic oscillator. We

could simulate diatomic molecules by coupling the potentials between adjacent dots. Of course,

the holy grail would be to construct even narrower dots through electron-beam lithography, and

hopefully trap single electrons for electron-spin-resonance measurements.
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A Two-Dimensional Isotropic
Harmonic Oscillator

In general, the harmonic oscillator in two-dimensions is described by Equation A.1.

V (x, y) = 1
2mω

2
1x

2
1 + 1

2mω
2
2x

2
2 (A.1)

where the x1 and x2 directions align with the potential’s major and minor axes. Quantum dots have

rotational symmetry around the center which implies that the potential is isotropic, ω1 = ω2. Thus,

we can rewrite the potential in terms of ρ =
√
x2

1 + x2
2.

V (ρ) = 1
2mω

2ρ2 (A.2)

A.1 Single-Particle Solution in Cartesian Coordinates

The Hamiltonian in Cartesian coordinates can be written as a sum of 1D harmonic oscillators, as in

Equation A.3. As such, we can express it in terms of the number-operators in each direction, â†j âj
for j ∈ {1, 2} [8].

H =
[

1
2mp̂2

1 + 1
2mω

2x̂2
1

]
+
[

1
2mp̂2

2 + 1
2mω

2x̂2
2

]
= ~ω(â†1â1 + â†2â2 + 1) (A.3)

where âj =
√
mω

2~

(
x̂j + i

mω
p̂j

)
; j ∈ {1, 2}

This implies that the Hamiltonian must be simultaneously diagonal with both number operators.

This is easily realized by describing the eigenstates as a product of the 1D harmonic wavefunctions

in both directions: ψn1,n2(x1, x2) = X
(1)
n1 (x1)X(2)

n2 (x2). These states are indexed by the eigenval-

ues, n1, n2, of the two number operators. These quantum numbers correspond to the number of

excitations (or equivalently the number of non-interacting electrons) in the x1 and x2 directions

respectively. Recall that the 1D harmonic wavefunctions are given as in Equation A.4. The corre-
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sponding eigenvalues follow from the structure of the Hamiltonian, En1,n2 = ~ω(n1 + n2 + 1).

X
(j)
0 =

(mω
π~

)1/4
exp

(
−mω2~ x

2
j

)

X(j)
n = 1√

n!

(
â†j

)n
X

(j)
0 = 1√

2nn!

(mω
π~

)1/4
exp

(
−mω2~ x

2
j

)
Hn

(√
mω

~
xj

) (A.4)

where Hn(z) are the Hermite polynomials.

Figures A.1 and A.2 show some of the 2D wavefunctions and the energy spectrum respectively. Note

that just as in the 1D harmonic oscillator, these wavefunctions are purely real. Observe that the nth

state has a (n+ 1)-fold orbital degeneracy. Since each state can hold two-electrons of opposite spin,

the first shell can hold up to two electrons. Similarly, the second shell can hold up to four electrons,

the third shell can hold up to six electrons, and so on. These occupancies imply the magic number

series: {2, 6, 12, 20, 30, ...} [1].

Figure A.1: Wavefunctions for the 2D isotropic harmonic oscillator solved within the Cartesian
coordinates. The wavefunctions are indexed by the number eigenvalues, n1 and n2, corresponding
to the number of excitations in x1 and x2 directions respectively. Generated using Mathematica

for m = 1kg, ω = 1s−1, ~ = 1Js.
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Figure A.2: Energy spectrum of the 2D isotropic harmonic oscillator solved within the Cartesian
coordinates. The states are represented as a tuple of quantum numbers (n1, n2). The spectrum is
shown as a tree, where the left and right children correspond to adding an excitation in x1 and x1

respectively. Observe that nth state is (n+ 1)-fold degenerate, where n is zero-indexed.

A.2 Single-Particle Solution in Polar Coordinates

Note that the 2D isotropic harmonic oscillator has rotational symmetry in both the potential and

boundary condition. As seen in Equation A.2 the potential has no dependence on φ = arctan(y/x).

At first glance, it may seem suprising that the probability-density of the excited-states ψn1,n2(x1, x2),

described above, break this rotational symmetry.

However, recall that any linear combination of the degenerate states are also stationary states

with the same energy. For example, the states ψ1,0(x1, x2) and ψ0,1(x1, x2) form the cylindrically

symmetric linear combinations ψ1,± = 1√
2 (ψ1,0 ± iψ0,1). Figure A.3 illustrates the magnitude of

either ψ1,±. The azimuthal (φ) dependence only affects the phase of the wavefunction.

ψ1,±(ρ, φ) ∝ (x1 ± ix2)e−α(x2
1+x2

2)/2 = ρe±iφe−αρ/2 (A.5)

We can explicitly solve the Schrödinger equation in polar coordinates by assuming the seperable

Figure A.3: The magnitude of the first excited circular harmonics, ψ1,± = ψ1,0 ± iψ0,1.
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solution ψ(ρ, φ) = R(ρ)Φ(φ). The derivation is as below.

Eψ(ρ, φ) = − ~2

2m

[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂φ2

]
ψ(ρ, φ) + V (ρ)ψ(ρ, φ)

0 = ~2

2mρ2

[
ρ

R(ρ)
d

dρ

(
ρ
dR

dρ

)
+ 1

Φ(φ)
d2Φ
dφ2

]
+ [E − V (ρ)]

1
Φ(φ)

d2Φ
dφ2 = ρ

R(ρ)
d

dρ

(
ρ
dR

dρ

)
+ 2mρ2

~2 [E − V (ρ)]

The left-hand side is only a function of φ, whereas the right-hand side is just a function of ρ. As

such, we can equate each side to a constant, −l2. First, let’s consider the left-hand side.

1
Φ(φ)

d2Φ
dφ2 = −l2 =⇒ Φl(φ) = eilφ (A.6)

Where the values of l appear in positive-negative pairs. The periodic boundary condition, e±ilφ =

e±i2πlφ constrains l to be an integer. This solution ensures that the probability density is rotationally

symmetric about the origin. Intuitively, the system can be envisioned as consisting of "quanta" with

positive or negative orbital angular momentum. This is explored further in Section A.3 [8].

Next, we solve the radial equation, substituting in the harmonic potential.

0 =
[
d2

dρ2 + 1
ρ

d

dρ
− l2

ρ2

]
R(ρ) + 2m

~2

[
E − 1

2mω
2ρ2
]
R(ρ) (A.7)

The solutions to this differential equation involve the generalized Laguerre polynomials, L(l)
n (z) =

z−l(∂z − 1)nzn+l/n! [1].

R(ρ) = 1
ρ0

√
n!

2π(n+ |l|)!

(
ρ

ρ0
√

2

)|l|
e−ρ

2/4ρ2
0 L(l)

n

(
ρ2

2ρ2
0

)
(A.8)

where ρ0 =
√
~/mω is the characteristic length. The solutions are well-behaved for non-negative

integers n:

n = 1
2

[
|l|+ 1− E

~ω

]
≥ 0

In summary, the circular harmonics and the corresponding energy eigenvalues are given by Equations

A.9 and A.10. The lowest energy state (n, l) = (0, 0) can hold up to two electrons (including the

spin degeneracy). The next shell has a double orbital degeneracy formed by (0,±1), and can contain

up to 4 electrons. The third shell has a triple orbital degeneracy with (0,±2), (1, 0) so that it can

hold up to six electrons. As expected, the resulting magic numbers, {2, 6, 12, . . . } match those from
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the Cartesian solution.

ψn,l(ρ, φ) = eilφ

ρ0

√
n!

2π(n+ |l|)!

(
ρ

ρ0
√

2

)|l|
e−ρ

2/4ρ2
0 L(l)

n

(
ρ2

2ρ2
0

)
(A.9)

En,l = ~ω(2n+ |l|+ 1) (A.10)

ρ0 =
√
~/mω n ∈ {0, 1, 2, . . . } l ∈ {0,±1,±2, . . . }

Figure A.4 shows some of the radial wavefunctions and their respective energies. We see that l sets

the size of the dip at the origin and the radial extent of the wavefunction, whereas n represents the

number of nodes in the radial direction [1].
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Figure A.4: The radial component for some of the wavefunctions and their corresponding energy
values. The x-axis has been scaled to units of ρ0. The wavefunctions are indexed as (n,l). The

quantum number n increases from top to bottom, whereas l increases from left to right. Generated
using Mathematica.
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A.3 Angular Momentum

We briefly stated that the quantum number, l represents the number of orbital angular momentum

quanta in the system. We can verify this explicitly by deriving the angular momentum operator in

cylindrical coordinates for central potential, r = ρρ̂ [8].

L̂
−i~

= r×∇ = ρρ̂×
[
ρ̂
∂

∂ρ
+ φ̂

1
ρ

∂

∂φ
+ ẑ

∂

∂z

]
= ẑ

∂

∂φ
− φ̂ρ ∂

∂z
(A.11)

Since our potential is independent of z, the angular momenutm operator is L̂ = −i~ ∂
∂φ . Equation

A.12 shows that circular harmonics are infact eigenstates of the angular momentum operator, with

eigenvalues ~l.

L̂ ψn,l(ρ, φ) = −i~Rn,l(ρ) ∂

∂φ
Φl(φ) = ~l ψn,l(ρ, φ) (A.12)

Since the circular harmonics simultaneously diagonalize the Hamiltonian as well as the angular

momentum, we know that the two operators commute. In other words, the angular momentum

is conserved for the circular harmonics. This agrees with Noether’s theorem, which states that a

rotationally-symmetric Hamiltonian conserves angular momentum [9].

We can derive the same result independent of the coordinate system. Recall that the position and

momentum operators can be defined in terms of the Cartesian bosonic operators [9].

x̂j =
√

~
2mω

(
â†j + âj

)
p̂j = i

√
mω~

2

(
â†j − â

†
j

)
(A.13)

where j ∈ 1, 2. This allows us to write the Hamiltonian and angular momentum operators in terms

of the bosonic operators.

Ĥ = ~ω
(
â†1â1 + â†2â2 + 1̂

)
(A.14)

L̂z ≡ x̂1p̂2 − x̂2p̂1

= −1
2 i~

[(
â1 + â†1

)(
â2 − â†2

)
−
(
â2 + â†2

)(
â1 − â†1

)]
= −i~

(
â†1â2 − â†2â1

)
(A.15)

= ~
[
â†1 â†2

]0 −i

i 0

â1

â2

 (A.16)

where we’ve used the commutator identities, [âj , â†k] = δj,k and [âj , âk] = [â†j , â
†
k] = 0. Diagonalizing

the matrix in Equation A.16 yields a linearly transformed set of bosonic operators for the spherical
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harmonics.

b̂1 = 1√
2

(â1 + iâ2) b̂2 = 1√
2

(â1 − iâ2) (A.17)

Such that L̂z = ~l̂ and Ĥ = ~ω
(
n̂+ 1̂

)
for l̂ = b̂†2b̂2 − b̂†1b̂1 and n̂ = b̂†1b̂1 + b̂†2b̂2 [8].

A.4 Two-Particle Solution in Polar Coordinates

A.4.1 Decoupling the Hamiltonian

Now we add a second particle into the harmonic oscillator. As seen in Equation A.18 we’ve introduced

a Coulomb interaction of strength λ, in addition to the harmonic potential on each particle .

H =
[

p̂2
1

2m1
+ p̂2

2
2m1

]
+
[

1
2m1ω

2r̂2
1 + 1

2m2ω
2r̂2

2

]
+ λ

|̂r1 − r̂2|
+Hspin (A.18)

Following Ref. [6], we shift to the relative and center-of-mass coordinates. Classically this transfor-

mation is given by Equations A.19 and A.20 respectively.

M = m1 +m2 R = m1r1 +m2r2

m1 +m2
P = p1 + p2 (A.19)

µ = m1m2

m1 +m2
r = r1 − r2 p = m2p1 −m1p2

m1 +m2
(A.20)

It straightforward to show that:

p2
1

2m1
+ p2

2
2m2

= P2

2M + p2

2m m1r2
1 +m2r2

2 = MR2 + µr2

Furthermore, this is a classically canonical change of variables as it conserves the Poisson bracket

relationships. Therefore, the classical Hamiltonian can be reinterpreted as representing two particles

with positions r and R and momenta p and P respectively.

Quantizing the system, we inherit the commutation relationships, the only non-zero commutators

being [r̂j , p̂j ] = [R̂j , P̂j ] = i~ for i ∈ (x, y). Noting that in polar coordinates the vector norm, |x|,

equals the axial distance, ρx, we can decouple the quantum mechanical Hamiltonian as in Equation

A.21

H =
[
−~2

2µ∇
2
r + 1

2µω
2ρ2
r + λ

ρr

]
︸ ︷︷ ︸

Hr

+
[
− ~2

2M∇
2
R + 1

2Mω2ρ2
R

]
︸ ︷︷ ︸

HR

+Hspin (A.21)

This decoupled form of Equation A.21 allows for a product ansatz for the stationary states: ψ(r,R,S1,S2) =
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ξ(r)Ξ(R)χ(S1,S2), where Sj is the spinor for particle j. The corresponding eigenvalues have the

form E = ε+ η + Espin, where η and ε are the eigenvalues of HR and Hr respectively.

Pauli’s exclusion principle demands that if ξ(r) is spatially symmetric with respect to the inversion

r → −r, then χ(S1,S2) must be spin-symmetric, and vice versa. There aren’t any restrictions

imposed on Ξ(R). As such, the solutions to Ξ(R) are identical to the single particle solutions given

by Equations A.9 and A.10.

A.4.2 Analytical Solutions for the Internal Motion

The Schrödinger equation Hrξ(r) = εξ(r) can be expanded as in Equation A.22. For convenience,

we ignore the subscript on the coordinates {ρr, φr}.{
−~2

2µ

[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ

∂2

∂φ2

]
+ 1

2µω
2ρ2 + λ

ρ

}
ξ(ρ, φ) = ε ξ(ρ, φ) (A.22)

Similar to the single-particle case, we can isolate the azimuthal factor in the wavefunction as Φl(φ) =

e±ilφ. Just as before, the azimuthal equation is equivalent to the eigenvalue relationship for the

angular momentum. Therefore, l represents the number of angular-momentum quanta within the

wavefunction. The radial equation is similar to Equation A.7 just with an additional Coulomb

repulsion term.

0 =
[
d2

dρ2 + 1
ρ

d

dρ
− l2

ρ2

]
R(ρ) + 2µ

~2

[
ε− 1

2µω
2ρ2 − λ

ρ

]
R(ρ) (A.23)

Following Ref. [6], we assume a solution of the form R(ρ) = u(ρ)/√ρ. Then u(ρ) satisfies the

Schrödinger equation given by Equation A.24

[
− d2

dρ2 +
(
l2 − 1

4

)
1
ρ2 + ω̃2ρ2 + λ̃

ρ

]
u(ρ) = ε̃u(ρ) (A.24)

where we’ve defined ω̃ = µω/~, λ̃ = 2µλ/~2, and ε̃ = 2µε/~2. Switching to the dimensionless

coordinate, x ≡
√
ω̃ρ, the radial Schrödinger equation reads as in Equation A.25.

[
− d2

dx2 +
(
l2 − 1

4

)
1
x2 + x2 +

(
λ̃√
ω̃

)
1
x

]
u(x) =

(
ε̃

ω̃

)
u(x) (A.25)

We clearly see that the system is only dependant on two dimensionless parameters: the coupling

constant λ∗ ≡ λ̃/
√
ω̃ and the reduced energy ε∗ ≡ ε̃/ω̃.

When x → ∞, the system resembles a harmonic oscillator (i.e. u(x) ≈ e
1
2x

2). In contrast, when

x → 0 the system resembles a Hydrogen atom (i.e. u(x) ≈ x|l|+
1
2 ). Therefore, we expect the

analytical solutions to have the form given by Equation A.26, where t(x) is a polynomial which
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follows the differential equation A.27 [6, 7].

u(x) = e−
1
2x

2
x|l|+

1
2 t(x) where t(x) ≡

∞∑
j=0

cjx
j (A.26)

[ε∗ − 2(|l|+ 1)]xt(x)− λ∗t(x) + (2|l|+ 1)t′(x)− 2x2t′(x) + xt′′(x) = 0 (A.27)

Solving this differential equation, we observe that the coeffecients of the polynomial expansion,

{cj}j≥0 follow a two-step recursion relation given by Equation A.28 [6].

c0 = normalization constant (A.28a)

c1 = 1
(2|l|+ 1)

λ̃√
ω̃
c0 (A.28b)

cj = 1
j(2|l|+ j)

{
λ̃√
ω̃
cj−1 +

[
2(j + |l| − 1)−

(
ε̃

ω̃

)]
cj−2

}
(A.28c)

By induction, we see that any coefficient can be expressed as cj = Fj(|l|, ε∗, λ∗)c0. To normalize

the wavefunction we truncate the power-series at j = m. This corresponds to the conditions given

by Equation A.29 [6, 7].

cm = 0 ⇐⇒ Fm(|l|, ε∗, λ∗) = 0 (A.29a)

AND

cm+1 = 0 ⇐⇒ ε̃

ω̃
= 2(|l|+m) (A.29b)

As suggested by Ref. [6], these equations simultaneously determine the allowed spectrum. We first

calculate the solvable fields λ̃2/ω̃ from A.29a for a particular m and |l|. We insert the corresponding

values of ω̃ into A.29b to determine the energy-values [6]. The true energies for the solvable values

of ω̃ are given by Equation A.30. Unlike the non-interacting system, the ground-state of this system

is at zero.

ε = ~ω(|l|+m) (A.30)

The exact solutions of the interacting system can be categorized in two groups: infinite-field solutions,

where λ̃2/ω̃ = 0, and finite-field solutions, where λ̃2/ω̃ > 0 [6, 7]. Note that the wavefunctions below

are given as a function of the axial distance, ρ rather than the dimensionless distance x.

For m = 1, there is only one infinite-field solution given by Equation A.31

λ̃2

ω̃
= 0 =⇒ t2,l(ρ) = 1 (A.31)
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For m = 2, there is one finite-field solution given by Equation A.32

λ̃2

ω̃
= 2(2|l|+ 1) =⇒ t2,l(ρ) = 1 +

(
λ̃

2|l|+ 1

)
ρ (A.32)

For m = 3, there is one infinite and one finite-field solution given by Equation A.33

λ̃2

ω̃
= 0 =⇒ t3,l(ρ) = 1−

(
ω̃ ρ2

|l|+ 1

)
(A.33a)

λ̃2

ω̃
= 4(4|l|+ 3) =⇒ t3,l(ρ) = 1 +

(
λ̃ ρ

2|l|+ 1

)
+
(

λ̃2 ρ2

2(2|l|+ 1)(4|l|+ 3)

)
(A.33b)

For finite-fields, ω̃ is exactly solvable in terms of λ̃2. Substituting these values of ω̃ into Equation

A.30 gives the energyvalues as a function of the squared e-e interaction strength, λ̃2.

On the other hand, the wavefunctions within infinite-fields do not depend on λ̃ at all. If we assume

a finite frequency oscillator (ω̃ < ∞), then these correspond to a vanishing electron-electron inter-

action (λ̃→ 0). Section A.4.3 below shows that these solutions exactly resemble the single-particle

solutions.

A.4.3 Infinite-Field Solutions

Comparison of Equations A.10 and A.30, shows that the interacting system is degenerate with the

non-interacting one for odd values of m (i.e. m = 2n + 1). Odd values of m are also the only ones

which produce infinite-field solutions. Intuitively, the limit λ̃/
√
ω̃ → 0 corresponds to either a very

thin and steep well potential or a negligible electron-electron repulsion. Either way, we expect the

electrons to be confined close to the origin, qualitatively resembling the behavior of a single electron.

Consider the solution described by Equations A.26 and A.28. Substituting λ̃/
√
ω̃ = 0 we realize

that only even-indexed coefficients are non-zero. This implies that t(x) is a function of x2 only. If we

insert m = 2n+1 and j = 2k into A.28 we obtain the recursion relation for the generalized Laguerre

polynomial L|l|n (x2) given by Equation A.34 [7]. This shows that the eigensolutions corresponding

to λ̃/
√
ω̃ = 0 are equivalent to those given by Equation A.9.

ck = (k − n− 1)
k(k + |l|) ck−1 (A.34)

In summary, the set of solutions for the non-interacting Hamiltonian are contained within the set of

exactly solvable solutions of the interacting system. In the limit of an infinitely steep well and no

mutual repulsion, the electrons are forced to densly pack themselves at the origin.
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A.4.4 Finite-Field Solutions

Now we turn our attention to the solutions for which λ̃/
√
ω̃ > 0. Figure A.5 plots the energy

spectrum of the solvable states versus the coupling coefficient squared. Figure A.6 plots the wave-

functions for some of these states. We can group the solvable states based on the number of nodes in

the corresponding wavefunction (i.e. the excitation number), forming energy bands (colored lines) as

a function coupling coefficient. If we index these bands as n, we notice that this exactly corresponds

to the relationship m = 2n + 1 when λ̃/
√
ω̃ = 0. In other words, the infinite-field (single-particle)

solutions evolve with the coupling parameter. The solvable states along a band are exactly those

where ε̃/2ω̃ = |l| + m is an integer. This exactly aligns with the requirement for the truncation of

the power-series at some integer m.

Figure A.5: Energy spectra for the solvable states versus the coupling coefficient squared, for
|l| = 0 and |l| = 1. The states are grouped (colors) based on the number of nodes, n in the

corresponding wavefunctions. This forms the energy bands (colored lines) as a function of the
coupling coefficient. Generated using Mathematica.

Figure A.7 compares the ground-states (lowest solvable ω) for various values of m. Classically,

the particle is expected to be at the minima,ρ0 of the effective potential. Therefore, the distance

is given in units of ρ0. Observe that as we increase m, the corresponding ground-state frequency

decreases (as expected from the blue line in Figure A.5). This corresponds to a thin-and-steep

well or minimal repulsion between the electrons, which is reflected by the wavefunction becoming

increasingly concentrated around ρ0.
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Figure A.6: Wavefunctions for some of the solvable states for |l| = 1. Note that we’ve ignore the
states corresponding to odd values of m as they qualitatively resemble the adjacent even energy

levels for m′ = m− 1. The distance is given in units of ρ0. Generated using Mathematica.

Figure A.7: Comparing the ground-states for m = 2(blue), m = 10(orange), and
m = 30(green).The distance is given in units of ρ0. Generated using Mathematica.
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B Detailed Description on the
Heidelberg Dose Tests

To perform these tests we tile a 100 × 100 array of quantum dots across 17 columns and 7 rows.

Across the columns we sweep the intensity of the laser, from 20% to 100%, with increments of 10%.

Down the rows we sweep the focus-offset of the laser, from 0% to 15% with increments of 2.5%.

Unless otherwise specified, photolithography is performed using the 2mm writehead on AZ1505

photoresist spun at 4000rpm for 40s.

Table B.1: Fabrication Steps to Define the Bond-Pads and Dice the Devices

Sample Number Difference in Fabrication from Initial Comments

HDT010

(Initial

Device)

s Default stripe width of

60µms Filter: 1 %s 1 min develops No Aluminum Hard Mask

The dots are wide visibly

wider than expected, al-

though they do not merge

into one another.

HDT011

s Filter: 1 % + 25 %s 1 min develops No Aluminum Hard Mask

The larger features are well

defined but no dots have been

defined, even for the highest

intensity doses.

HDT020

s Filter: 1 %s 5 min develops Aluminum hard mask

present

We can see dots only for

the dose corresponding to the

highest intensity and focus

offset. We see a gradient in

the size of the dots across

a row, as well as a stitch-

ing error between consecutive

stripes. Optial and SEM

images from this sample are

shown in Figure 3.4.
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HDT030

s Filter: 1 % + 25 %s No Aluminum Hard Masks AZ1505 Photoresist spun

at 6000rpm for 40s

We thought that a thinner

layer of photoresist may be

able to produce dots. While

we were able to see the larger

features defined within the re-

sist, no dots could be seen.

This further proves that an

aluminum hard mask with a

longer develop time is the

most promising way forward.

HDT021

s Stripe width changed to 20

µms Filter: 1 % Onlys Aluminum hard mask

presents 5 min develop

After HDT020, we hoped to

make the laser more intense.

However, making the stripe-

width narrower as well as re-

moving the 25% filter added

up to make the laser stronger

than required. As seen in

Figure 3.5, the dots are sig-

nificantly overdeveloped. We

can correct for this with addi-

tional filters and a shorter de-

velop time.
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HDT022

s Stripe width changed to 20

µms Filter: 1 % + 50 %s Aluminum hard mask

presents 3 min develop

The dots are distinguishable

for nearly all doses. We

see a gradual variance in the

size of dots as the intensity

increases; from the smallest

dots of width 650nm to doses

where the dots have merged to

form anti-dots. This change

in size is shown by the SEM

images in Figure 3.6. We

see some chipping around the

dots in the aluminum hard

mask. This isn’t defined into

the TaWSi layer. This could

possibly be avoided by reduc-

ing the laser’s intensity.

HDT023

s Stripe width changed to

20 µms Filter: 1 % + 25 %s Aluminum hard mask

presents 3 min develop

This set of dose-tests could

not be fabricated due to time

constraints. We expect this

sample to be the best so far,

with the smallest sized dots

and minimal chipping in the

aluminum.
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C Engineering and Industrial
Standards

The independent project described in this thesis incorporated the following engineering and industrial

standards:

Standardized modeling conventions: AutoCAD software package was used to design the CAD

files used for photolithography. FlexPDE was used for the finite-element modelling of the dots.

International units of physical quantities: SI units were used throughout the thesis.

Programming languages: Mathematica was used to compute the wavefunctions and energy-values

of the 2D harmonic oscillator and related quantum mechanical problems.
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